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Simple Summary: Childhood tumors of the central nervous system (CNS) constitute a grave disease
and their diagnosis is difficult to be handled. To gain better knowledge of the tumor’s biology, it is
essential to understand the underlying mechanisms of the disease. MicroRNAs (miRNAs) are small
noncoding RNAs that are dysregulated in many types of CNS tumors and regulate their occurrence
and development through specific signal pathways. However, different types of CNS tumors’ area
are characterized by different deregulated miRNAs. Here, we hypothesized that CNS tumors could
have commonly deregulated miRNAs, i.e., miRNAs that are simultaneously either upregulated or
downregulated in all tumor types compared to the normal brain tissue, irrespectively of the tumor
sub-type and/or diagnosis. The only criterion is that they are present in brain tumors. This approach
could lead us to the discovery of miRNAs that could be used as pan-CNS tumoral therapeutic targets,
if successful.

Abstract: Despite extensive experimentation on pediatric tumors of the central nervous system (CNS),
related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology
of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We
hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor
types. Aim: The current study aims to reveal the co-deregulated miRNAs across different types
of pediatric CNS tumors. Materials: A total of 439 CNS tumor samples were collected from both
in-house microarray experiments as well as data available in public databases. Diagnoses included
medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma,
teratoma, yoc sac tumors, ocular tumors and retinoblastoma. Results: We found miRNAs that were
globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372
were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were
co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149,
miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain
tissue. Conclusions: Our approach could prove significant in the search for global miRNA targets for
tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning
the present approach.

Keywords: central nervous system; CNS tumors; pediatric CNS tumors; childhood CNS tumors;
miRNA; common mechanics; microarrays
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1. Introduction

A central nervous system (CNS) tumor begins when healthy cells in the brain or the
spinal cord change and grow out of control, forming an either benign or cancerous tumor.
The movement and cognition of patients suffering from a CNS tumor are affected, making
it challenging to treat, because the tissues around the tumor are often vital to the body’s
functioning [1]. About 1200–1500 new cases of CNS tumors are diagnosed per year in
the US alone, with an equal ratio between the two sexes. More than 90% of primary CNS
tumors occur in the intracranial cavity affecting the brain, meninges, epiphysis, optic nerve,
and parapharyngeal areas.

Childhood CNS tumors differ greatly from other childhood neoplasms, as CNS tumors
are related to high mortality rate if the tumor is unable to be removed surgically. The
treatment of CNS tumors in infants and young children may be especially challenging
because a child’s brain is still developing. However, more than half of these patients are
disease-free five years after their diagnosis. With this increase in survival, these children
are expected to have serious, permanent, neurological, cognitive, endocrinological and
psychological problems after extensive radiotherapy treatment. Therefore, the life quality
of long-term survivors needs to be improved. An interdisciplinary approach in managing
brain tumors in children is important to improve treatment, especially in benign tumors,
and in low-grade children malignancies.

MicroRNAs (miRNAs) are endogenous single-stranded RNA molecules ranging from
20 to 25 nucleotides in size, and deriving from larger precursors by maturation [2]. They
play an important role in modifying the sequence, structure and expression of messenger
(m)RNAs and at the same time, they affect protein translation. MiRNAs control cell prolifer-
ation, differentiation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT),
metastasis and metabolic pathways in cancer, including CNS tumors [3]. Thus, through
their expression profiles, they can be used as biomarkers for the prognosis, diagnosis and
treatment of different types of cancers [2].

In different cancers, miRNA expression is deregulated by a variety of mechanisms,
including amplification, deletion, mutations, epigenetic silencing [4–6], or loss of the
expression of their transcription factor [7,8]. Several miRNAs are distributed in fragile
or cancer-related genomic regions [9]. In addition, they have been shown to function
either as oncogenes or tumor suppressor genes [10,11]. MiRNAs can simultaneously
target oncogenes and tumor suppressor genes in cancer cells. Therefore, the regulation of
several signaling pathways is cooperatively being carried out by a combination of different
miRNAs. Their oncogenic or tumor suppressor activity depends heavily on their cellular
environment. For example, the miR-29 family exhibits tumor suppressor activity in lung
cancer via targeting the DNA methyltransferase DNMT3A, while it has oncogenic activity
in breast cancer, by targeting the DNA methyltransferases DNMT3B and/or ZFP36 [12].

The identification of free circulating miRNAs from the whole blood, plasma or serum,
can be successfully used in cancer research, and despite the heterogeneity in circulating tu-
mor cells (CTCs) [13], miRNA profiling can be used as a prognostic and therapy-monitoring
tool in childhood CNS tumors [14,15]. MiRNA profiling has been used to detect changes
in neurons [16] and in some cases of pediatric CNS tumors they have also been used as
diagnostic and therapeutic molecules [17,18]. Nevertheless, there is still a lot more to learn
regarding their role in CNS tumors. New insights on the role of miRNAs in CNS tumors
could help us understand better their pathology, etiology and treatment.

In this study, we hypothesized that different childhood tumors of the CNS could
share similar miRNA expression patterns. We explored various GEO datasets containing
expression data from different types of pediatric brain tumors, and we identified miRNAs
that could serve as candidate biomarkers in their diagnosis, prognosis and therapy.
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2. Materials and Methods
2.1. Collection and Analysis of Variables

Along with the microarray data we collected categorical variables for all tumor and
control samples. In particular, we collected the following categorical variables: gender, age,
country of origin of the study, survival at biopsy, diagnosis, anatomic location in the brain,
tumor grade, developmental status (i.e., based on the subject’s age), sampling (if the biopsy
took place at diagnosis or relapse), and clinical outcome.

2.2. Microarray Samples

We mined microarray data from the publicly available databases Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/, accessed on 5 September 2020) (GEO)
and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/, accessed on 5 September 2020)
which contain experiments on childhood CNS tumors. To this end, we combined the
keywords: “childhood”, “CNS”, “brain tumor”, “primary”, “embryonal”, “central nervous
system tumor”, [(pediatric tumor miRNA) AND “Homo sapiens”[porgn:__txid9606]], [(pe-
diatric medulloblastoma miRNA) AND “Homo sapiens”[porgn:__txid9606]], [(pediatric
astrocytoma miRNA) AND “Homo sapiens”[porgn:__txid9606]], [(pediatric ependymoma
miRNA) AND “Homo sapiens”[porgn:__txid9606]]. From the recovered experiments (GEO
Series) we selected only those concerning miRNA expression. Our search finally included
10 different series, as well as in-house microarray experiments concerning miRNA expres-
sion. In total, we collected data from 451 CNS tumor samples for further analysis, yet
12 samples were removed because they included patients older than 60 years old (Table 1).

Table 1. Summary of the microarray experiments (data series) used in the present study (Legend: GCTs: Intracranial
pediatric germ cell tumors).

Series Platform Diagnosis Sample
Number Publication

GSE19347 GPL8227 GCTs-Germinoma 6 Wang et al. (2010) [19]

GSE19347 GPL8227 GCTs-Teratoma 3 Wang et al. (2010) [19]

GSE19347 GPL8227 GCTs-Yoc sac tumor 3 Wang et al. (2010) [19]

GSE34016 GPL8786 Control (Neural progenitor cells) 6 N/A

GSE42657 GPL8179 Pilocytic Astrocytoma 15 Jones et al. (2015) [20]

GSE42657 GPL8179 Papillary Neuroglial Tumor 1 Jones et al. (2015) [20]

GSE42657 GPL8179 Diffuse Astrocytoma 3 Jones et al. (2015) [20]

GSE42657 GPL8179 Anaplastic Astrocytoma 2 Jones et al. (2015) [20]

GSE42657 GPL8179 Glioblastoma 5 Jones et al. (2015) [20]

GSE42657 GPL8179 Ependymoma 14 Jones et al. (2015) [20]

GSE42657 GPL8179 Medulloblastoma 9 Jones et al. (2015) [20]

GSE42657 GPL8179 Atypical teratoid rhabdoid
tumor (ATRT) 5 Jones et al. (2015) [20]

GSE42657 GPL8179 Choroid Plexus Papilloma 4 Jones et al. (2015) [20]

GSE42657 GPL8179 Controls 7 Jones et al. (2015) [20]

GSE45126 GPL16783 Controls (Mixture of all RNA samples) 98 Moreau et al. (2013) [21]

GSE45126 GPL16783 Controls (Fetal brain) 98 Moreau et al. (2013) [21]

GSE62367 GPL16384 Ocular Medulloepithelioma 5 Edward et al. (2015) [22]

GSE62367 GPL16384 Controls 8 Edward et al. (2015) [22]

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
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Table 1. Cont.

Series Platform Diagnosis Sample
Number Publication

GSE63319 GPL16384 Glioblastoma 11 N/A

GSE63319 GPL16384 Anaplastic Astrocytoma 3 N/A

GSE63319 GPL16384 Controls 4 N/A

GSE66968 GPL8227 Medulloblastoma 29 N/A

GSE84747 GPL21572 Retinoblastoma 12 Castro-Magdonel et al. (2017) [23]

GSE135189 GPL20906 Pilocytic Astrocytoma 16 Darrigo et al. (2019) [24]

GSE135189 GPL20906 Ocular
Medulloepithelioma 1 Darrigo et al. (2019) [24]

GSE135189 GPL20906 Controls 11 Darrigo et al. (2019) [24]

In-house
miRLink (https:

//appliedmicroarrays.com/, Last
Accessed on 5 September 2020)

Pilocytic Astrocytoma 19 Braoudaki et al. (2016) [25]

In-house
miRLink (https:

//appliedmicroarrays.com/, Last
Accessed on 5 September 2020)

Ependymoma 7 Braoudaki et al. (2016) [25]

In-house
miRLink (https:

//appliedmicroarrays.com/, Last
Accessed on 5 September 2020)

Medulloblastoma 15 Braoudaki et al. (2014) [18]

In-house
miRLink (https:

//appliedmicroarrays.com/, Last
Accessed on 5 September 2020)

ATRT 4 Braoudaki et al. (2014) [18]

In-house
miRLink (https:

//appliedmicroarrays.com/, Last
Accessed on 5 September 2020)

Cortical Dysplasia 2 Braoudaki et al. (2014) [18]

In-house
miRLink (https:

//appliedmicroarrays.com/, Last
Accessed on 5 September 2020)

Controls 14 Braoudaki et al. (2014, 2016) [18,25]

2.3. Microarray Data Pre-Processing

The extracted microarray data were entered into a Microsoft Excel® file. In order
to identify the common miRNAs across all series we used the miRNA symbols as the
common “denominator” across all series. Since each series had multiple occurrences of
miRNAs, they were entered in a diagonal form in a hyper-matrix (Figure 1), in which the
rows correspond to miRNA symbols, columns correspond to samples and the individual
series were inserted diagonally. Empty cells were replaced with “NaN”.

2.4. Microarray Data Post-Processing

Microarray data were processed in Matlab®. They were initially background corrected
using the multiplicative background correction (MBC) approach [26]. Specifically, MBC
subtracts the logarithmic estimates of the background intensity from the logarithmic
foreground intensity. Where no background data were provided in the GEO data series,
microarray data were considered as background corrected and further correction was
applied. In particular, the data series for which no background correction was applied
were: GSE34016, GSE62367, GSE63319, GSE66968, and GSE84747.

https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
https://appliedmicroarrays.com/
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Figure 1. The hyper-matrix containing all data series for further processing, where n is the data series, i is the miRNA and j
the respective sample.

After background correction, negative values were removed and replaced with “NaN”
values. Our intention was to find miRNA expression, even those of low expression values.
It is possible that not only those values that are of great difference are of importance, but
also that those that have very low expression values could be of biological importance.

Microarray data normalization was then performed using three algorithms: (a) Loess [27],
(b) Rank Invariant, and (c) Quantile algorithm. To account for batch effects, we divided the
matrix elements by the global mean. To account for differences across series we used the
log2-transformed ratio, which is performed as:

Ri.j = log2

( xi,j
xtotal

)
Xi,j = 2Ri.j

(1)

where, Ri,j is the global mean-transformed ratio, xi,j is the expression value of gene i and
sample j, Xi,j is the restructured value of the ith gene and jth sample.

The three algorithms were compared for their efficiencies. In general, the Quantile
algorithm performed better as compared to the other two. The normalized data are
provided as supplementary data (Table S1).

To reduce the complexity of the data set, we followed the replicate averaging approach
proposed by Uzman et al. [28]. We used the Student’s t-test [29] to identify the differentially
expressed miRNA genes (DE miRNAs) across all tumor samples as compared to all control
samples. The false discovery rate (FDR) was calculated as previously described [30–32].
The DE miRNA genes per experiment were identified at a confidence level of 95%. DE
miRNAs were treated in two different ways. Data were further processed and analyzed
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as “ratios”, i.e., as gene expression values calculated as the log2-transformed ratio of each
tumor sample over the mean of all control samples, using the following formula:

E = log2

(
FTumor,i,j

FControls,j

)
(2)

where E is the expression value, FTumor,i,j is the expression value of tumor sample i and
miRNA j, FControls,j is the mean expression value of all controls and miRNA j.

In addition, data were also analyzed as “naturals”, meaning DEGs that are non-log2-
transformed and thus including the control and tumor samples separately.

2.5. Unsupervised Classification Methods

DEGs were further analyzed for common expression patterns using classification
methods, using Matlab®. To gain further insight into the gene expression data, we used
unsupervised hierarchical clustering (HCL) and k-means classification [33,34]. HCL with
dendrogram was used and correlations were calculated with Euclidean distance. K-means
classification [33,34] was recently reported as one of the best performing clustering ap-
proaches for microarray class discovery studies [35]. We applied the squared Euclidean
as a distance measure, since it is generally considered to be a more appropriate measure
for use with k-means and found to outperform for ratio-based measurements [36]. We
used 100 iterations and the optimal cluster number for the k-means algorithm was esti-
mated using the Calinski–Harabasz criterion. Complete k-means clusters, centroids and
sorted centroids [37] were utilized. The DE miRNAs were also classified based on their
diagnosis categorical variable. In particular, the mean values of all samples with respect to
the diagnosis was estimated and the resulting descriptive statistical measure was utilized
for further k-means classification. Gene expression was also analyzed with respect to
the chromosomal distribution of the DE miRNAs. We explored the mean expression per
chromosome and heat-maps of chromosomal-related expression.

2.6. Common Expression Patterns in DE miRNAs

DE miRNAs were examined for possible common expression patterns, i.e., miRNAs
that were either down- or up-regulated in all CNS tumor samples, irrespectively of the
tumor diagnosis. The clusters revealed by unsupervised classification were examined
separately. Each miRNA was counted for its occurrences for up- or down-regulation in all
samples and the result was divided by the total number of samples, giving the percentage
of up- or down-regulated samples of the respective miRNA. We have looked for miRNAs
that were either up or down-regulated in all samples (100%), in 90–99% of all samples,
80–89% of all samples and 75–80% of all samples.

2.7. Receiver Operating Characteristic (ROC) Analysis

ROC curves and naïve Bayes classification were used to investigate the diagnostic
ability of the co-deregulated miRNAs between CNS tumors and control samples. In the
case of naïve Bayes classification, the algorithm used Bayes theorem, and (naively) assumes
that the predictors are conditionally independent, given a class. Naïve Bayes classifiers
assign observations to the most probable class (in other words, the maximum a posteriori
decision rule).

2.8. Statistical Analysis

For comparisons between groups, the Student’s t-test and one-way analysis of variance
(ANOVA) were performed for the continuous variables and chi-square tests were used for
the categorical variables. Post hoc comparisons (adjusted with Bonferroni criterion) were
also performed when significant differences (p < 0.05) of the variables in ANOVA tests
were identified. A value of p < 0.05 (two-tailed) was set as the level of significance.
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Chi-square test of independence was used to evaluate the association between patients’
characteristics. The characteristics that were found statistically significant were entered
into a logistic regression model in order to evaluate the probability of having multiple
positive reactions. The modeling of a quantitative variable based on one or more qualitative
and quantitative parameters, was performed through linear regression. Multiple logistic
regression was performed in order to evaluate the probability of having multiple positive
reactions. The relative risk (RR), odds ratio (OR), and absolute risk (AR) were calculated.

2.9. Gene Ontology (GO) Enrichment Analysis

We performed GO enrichment analysis using the gprofiler [38] and WebGestalt web-
tools [39]. Relations of the differentially expressed genes and the transcription factor
binding motifs were further investigated using the Pubgene Ontology Database (www.
pubgene.org, accessed on 5 September 2020). Gene definitions and functions were based on
the National Institute of Health databases (http://www.ncbi.nlm.nih.gov/sites/entrez/,
accessed on 5 September 2020).

2.10. Pathway Analysis

Pathway analysis was performed using the gprofiler [38] and WebGestalt web-tools [39].

3. Results
3.1. CNS Sample Cohort

In total, we analyzed 439 CNS samples (97 females and 165 males and 81 fetuses of
unknown gender, as well as 171 samples for which no data were available). The total
number of neoplasms were 195, irrespectively of the tumor type, and the control samples
were 244. The majority of tumor samples were malignant (n = 154), followed by benign
tumors (n = 41), mainly of grade I. Our sample cohort consisted of 53 grade I tumors,
18 grade II, 12 grade III and 92 grade IV tumors. Descriptive statistics of our sample cohort
are summarized in Table 2.

3.2. Deregulated (DE) miRNAs

We identified 406 co-deregulated (DE) miRNA genes across all CNS tumor samples
(p-value < 0.05 and FDR < 0.0019). DE miRNAs, were further processed to identify for
similar patterns of expression and Gene Ontology (GO) enrichment analysis.

3.3. Chromosomal Distribution of DE miRNAs

We analyzed the chromosomal distribution of the co-deregulated miRNAs across all
CNS tumor samples. This included the estimation of the mean expression of the co-DE
miRNAs per chromosome, as well as per chromosomal location (Figure 2). Although one
would expect to find higher values of DE miRNA expression in longer chromosomes, such
as chromosomes 1–5, we noticed that the highest expression was manifested by miRNAs
located in chromosome 21. Also, chromosome 20 manifested the lowest miRNA expression
in all CNS tumor samples, as expected due to its short chromosomal length (Figure 2A). In
order to obtain a panoramic view of the chromosome-related expression across all samples,
we created a heat-map with respect to chromosomal expression, which could provide a
hint of the co-DE miRNAs (Figure 2B). In addition, when examining the mean miRNA
expression with respect to their chromosomal location, we found that the co-upregulated
miRNAs harbored primarily in chromosomal regions 17q23.1, 21q21.3 and 3q26.2. On the
other hand, co-down-regulated miRNAs were primarily located in chromosomal regions
19p13.2, 1q23.1 and 2q37.3 (Figure 2C). We also created a heat-map for all chromosomal
locations, which confirmed the possible presence of co-DE miRNAs (Figure 2D).

www.pubgene.org
www.pubgene.org
http://www.ncbi.nlm.nih.gov/sites/entrez/
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Table 2. The sample cohort that was used in the present study.

Primary Nominal
Variables

Secondary Nominal
Variables N Descriptive

Variables Age (Years) ¥ Gest Age (Years) α

Total Population 439
Mean ± SD 4.20 ± 5.24 4.84 ± 5.31

Median (range) 1.73 (0.00–27.00) 2.47 (0.19–27.74)

Gender 1

FEMALES 97
Mean ± SD 3.99 ± 4.76 4.60 ± 4.88

Median 2.00 (0.00–16.00) 2.74 (0.27–16.74)

MALES 165
Mean ± SD 5.55 ± 6.32 6.19 ± 6.41

Median 3.00 (0.00–27.00) 3.74 (0.19–27.74)

FETUS 6
Mean ± SD 0.00 ± 0.00 0.23 ± 0.00

Median 0.00 (0.00–0.00) 0.23 (0.23–0.23)
Not Available 171 NaN NaN NaN

Sampling 2
VIVUS 181

Mean ± SD 7.86 ± 5.62 8.60 ± 5.62
Median 7.00 (0.03–27.00) 7.74 (0.77–27.74)

POST-MORTEM 200
Mean ± SD 0.89 ± 0.84 1.46 ± 1.02

Median 0.73 (0.00–1.73) 1.45 (0.19–2.47)

First Diagnosis 3
NEOPLASM 195

Mean ± SD 7.29 ± 4.93 8.03 ± 4.93
Median 7.00 (0.03–19.00) 7.74 (0.77–19.74)

CONTROL 244
Mean ± SD 1.69 ± 4.01 2.26 ± 4.07

Median 1.73 (0.00–27.00) 2.47 (0.19–27.74)

Second Diagnosis 4

MALIGNANCY 154
Mean ± SD 7.55 ± 5.05 8.29 ± 5.05

Median 7.00 (0.03–19.00) 7.74 (0.77–19.74)

BENIGN 41
Mean ± SD 6.35 ± 4.41 7.09 ± 4.41

Median 6.00 (0.83–16.00) 6.74 (1.57–16.74)

CONTROL 244
Mean ± SD 1.69 ± 4.01 2.26 ± 4.07

Median 1.73 (0.00–27.00) 2.47 (0.19–27.74)

Third Diagnosis 5

MEDULLOBLASTOMA 53
Mean ± SD 6.38 ± 4.06 7.12 ± 4.06

Median 6.00 (0.50–16.06) 6.74 (1.24–16.80)

ASTROCYTOMA 58
Mean ± SD 8.08 ± 5.14 8.82 ± 5.14

Median 7.00 (0.92–19.00) 7.74 (1.66–19.74)

EPENDYMOMA 21
Mean ± SD 5.19 ± 4.34 5.93 ± 4.34

Median 4.00 (1.00–16.01) 4.74 (1.74–16.75)

ATRT 9
Mean ± SD 1.59 ± 2.37 2.33 ± 2.37

Median 0.75 (0.03–7.61) 1.49 (0.77–8.35)

CONTROL 244
Mean ± SD 1.69 ± 4.01 2.26 ± 4.07

Median 1.73 (0.00–27.00) 2.47 (0.19–27.74)

CORTICAL DYSPLASIA 2
Mean ± SD 10.78 ± 3.87 11.52 ± 3.87

Median 10.78 (8.04–13.52) 11.52 (8.78–14.25)

GLIOBLASTOMA 16
Mean ± SD 12.73 ± 2.29 13.47 ± 2.29

Median 12.75 (10.40–15.90) 13.49 (11.14–16.64)

GERMINOMA 6
Mean ± SD 4.86 ± 5.13 5.60 ± 5.13

Median 4.30 (0.03–10.25) 5.04 (0.77–10.99)

TERATOMA 3
Mean ± SD 10.93 ± 3.41 11.67 ± 3.41

Median 10.60 (7.70–14.50) 11.34 (8.44–15.24)

YOC SAC TUMOR 3
Mean ± SD 14.00 ± 0.00 14.74 ± 0.00

Median 14.00 (14.00–14.00) 14.74 (14.74–14.74)

GLIONEURONAL 1
Mean ± SD 11.31 ± 3.75 12.05 ± 3.75

Median 12.00 (4.00–18.00) 12.74 (4.74–18.74)

PAPILLOMA 4
Mean ± SD 1.61 ± 1.21 2.35 ± 1.21

Median 1.00 (0.83–3.00) 1.74 (1.57–3.74)

OCULAR TUMOR 5a 6
Mean ± SD NaN NaN

Median NaN NaN

RETINOBLASTOMA 5b 12
Mean ± SD NaN NaN

Median NaN NaN
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Table 2. Cont.

Primary Nominal
Variables

Secondary Nominal
Variables N Descriptive

Variables Age (Years) ¥ Gest Age (Years) α

Grade 6

I 53
Mean ± SD 7.53 ± 4.96 8.27 ± 4.96

Median 6.69 (0.83–19.00) 7.43 (1.57–19.74)

II 18
Mean ± SD 6.85 ± 5.26 7.59 ± 5.26

Median 4.47 (0.26–16.01) 5.21 (1.00–16.75)

III 12
Mean ± SD 4.19 ± 3.88 4.93 ± 3.88

Median 2.55 (1.00–15.00) 3.29 (1.74–15.74)

IV 92
Mean ± SD 7.64 ± 4.90 8.38 ± 4.90

Median 7.82 (0.03–18.00) 8.56 (0.77–18.74)

CONTROL 244
Mean ± SD 1.69 ± 4.01 2.26 ± 4.07

Median 1.73 (0.00–27.00) 2.47 (0.19–27.74)

Not Available 20
Mean ± SD NaN NaN

Median NaN NaN

Developmental
Status 7

CHILD 125
Mean ± SD 6.13 ± 3.29 6.87 ± 3.29

Median 6.00 (0.47–12.00) 6.74 (1.21–12.74)

INFANT 37
Mean ± SD 0.81 ± 0.65 1.55 ± 0.65

Median 0.74 (0.16–2.02) 1.48 (0.90–2.76)

NEONATE 4
Mean ± SD 0.02 ± 0.01 0.76 ± 0.01

Median 0.02 (0.01–0.03) 0.76 (0.75–0.77)

ADOLESCENT 43
Mean ± SD 13.38 ± 3.24 14.12 ± 3.24

Median 14.00 (1.90–18.00) 14.74 (2.64–18.74)

ADULT 6
Mean ± SD 0.01 ± 0.08 0.35 ± 0.13

Median 0.00 (0.00–0.71) 0.35 (0.19–1.45)

FETUS 81
Mean ± SD 23.33 ± 3.14 24.07 ± 3.14

Median 23.50 (19.00–27.00) 24.24 (19.74–27.74)

ALL STAGES 100
Mean ± SD 1.73 ± 0.00 2.45 ± 0.21

Median 1.73 (1.73–1.73) 2.47 (0.38–2.47)

(Legend: ¥ age (years), α Gest. Age: gestational age, which is calculated as the age in years plus a mean gestational period of nine months,
or the gestational period provided if the sample was obtained from a fetus. 1 Gender included fetuses if the age of the fetus was provided;
2 describes the status of the patient at the time of biopsy, i.e., if biopsy was taken from a live subject or post-mortem; 3 diagnosis separated
into only two categories, i.e., neoplasm or control; 4 diagnosis separated into only three categories, i.e., malignant, benign and controls;
5 actual diagnosis (does not include subtypes). 5a and 5b Although both tumors originate in the eye, we have included them due to their
ectodermal origin; 6 tumor grade; 7 fetus: during gestational period; neonate: 28 days old, infant: from 28 days old to 1 year old; child:
1–12 years old; adol: adolescent 12–17 years old; adult: >18 years old; all stages: concerns the samples provided by dataset GSE45126, in
which a mixture of all RNAs was used as a control cohort; NaN, no values available).

3.4. Unsupervised K-Means Classification

Classification algorithms are a valuable tool for the detection of common patterns
across a gene expression dataset. Using k-means classification we clustered the DE miRNAs
into four clusters, with no obvious pattern, corroborating the heterogeneity of the various
types of CNS tumors (Figure 3). Each of them was then clustered hierarchically, to find
potential patterns of expression (Figures 4–7). As expected, the DE miRNAs did not
successfully cluster the different types of CNS tumors. However, clusters 1.3, 1.4 (Figure 4),
2.3 (Figure 5), 4.2, 4.3 and 4.8 (Figure 7) manifested similar expression patterns between
astrocytomas and medulloblastomas, suggesting common regulatory mechanisms between
these two CNS tumor types.
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Figure 2. miRNA expression with respect to their chromosomal distribution (A) and location (C). The heat-maps depict the
chromosome-related expression of the DE miRNAs (B), and their chromosomal location (D) (Legend: in sub-figure (A) the
x-axis corresponds to miRNA expression and the y-axis to chromosome number. In sub-figure (B) the x-axis corresponds to
tumor samples, the y-axis to chromosome number. In sub-figure (C), the x-axis corresponds to miRNA expression and the
y-axis to chromosomal locations. In sub-figure (D) the x-axis corresponds to tumor samples, the y-axis to chromosomal
locations and the z-axis (the heat-map) to miRNA expression).
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Figure 3. Unsupervised k-means clustering of DE miRNAs. Clustering resulted in four clusters (A), which are presented
with their centroids (B) and the respective sorted centroids (C).
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Figure 4. Hierarchical clustering (HCL) of cluster 1 as revealed previously by k-means clustering. The complete HCL is
presented (Cluster 1) with its respective sub-clusters, denoted as clusters 1.1, 1.2, 1.3, 1.4 and 1.5. In sub-clusters 1.3 and
1.4, the DE miRNAs grouped together astrocytoma and medulloblastomas (at the right side of HCL for cluster 1, selected
cluster are marked with different colors. Each sub-cluster is presented with its respective color).
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Figure 5. Hierarchical clustering (HCL) of cluster 2 as revealed previously by k-means clustering. The complete HCL is
presented (Cluster 2) with its respective sub-clusters, denoted as clusters 2.1, 2.2, 2.3 and 2.4. In sub-cluster 2.3 miRNAs
grouped together astrocytomas and medulloblastomas.
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Figure 6. Hierarchical clustering (HCL) of cluster 3 as revealed previously by k-means clustering. The complete HCL is
presented (Cluster 3) with its respective sub-clusters, denoted as clusters 3.1, 3.2, 3.3 3.4 and 3.5.

3.5. Common DE miRNAs in Different CNS Tumor Types

We then examined each k-means cluster separately aiming to find co-deregulatory
patterns of expression among all CNS tumors. We found several miRNAs that were globally
up- or down-regulated in all tumor samples.

In particular, in cluster 1, MIR376B and MIR372 were globally up-regulated across
most tumors (>75% and <100%) (Figure 8A,B). In cluster 2, MIR149, MIR214, MIR574,
MIR595 and MIR765 were globally down-regulated across all CNS tumor samples
(Figure 8C,D); ten miRNA genes were also found globally down-regulated in >90% of
all samples (Figure 8E). In cluster 3 (Figure 8F) we detected 23 globally down-regulated
miRNAs (>90%) (Figure 8G) and in cluster 4 (Figure 8H), 21 globally up-regulated miRNAs
(>90%) (Figure 8I). The results of this analysis are also summarized in Table 3.

3.6. Descriptive K-Means

We analyzed the gene expression patterns, aiming to discover tumor groups according
to their mean expression values. For example, we searched for an ascending or descending
order of expression, based on the tumor’s characteristics, including tumor aggressiveness,
diagnosis etc.

Interestingly, a set of genes manifested an ascending order with respect to the clas-
sification of tumors as malignant, benign and controls (denoted as “Second Diagnosis”).
Clustering analysis (Figure 9A–C) manifested four clusters, where the fourth cluster mani-
fested the aforementioned ascending behavior (Figure 9D). The DE miRNAs in cluster 4
included: MIR1202, MIR1207, MIR1243, MIR1246, MIR1307, MIR1469, MIR1915, MIR2861,
MIR3130, MIR3143, MIR3178, MIR3191, MIR3196, MIR3202, MIR320A, MIR320E, MIR3613,
MIR3621, MIR3665, MIR3667, MIR3679, MIR3684, MIR4261, MIR4267, MIR4280, MIR4281,
MIR4330, MIR494, MIR500B, MIR514B, MIR550, MIR560, MIR638 and MIRLET7A2.
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Figure 7. Hierarchical clustering (HCL) of cluster 4 as revealed previously by k-means clustering. The complete HCL is
presented (Cluster 4) with its respective sub-clusters, denoted as clusters 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. In sub-cluster
4.2, 4.3 and 4.8 miRNAs grouped together astrocytomas and ocular tumors.
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Figure 8. Common DE miRNAs across all CNS tumor samples. The co-DE miRNAs are presented in each k-means
cluster (1–4). Each k-means cluster is presented separately along with the individual genes manifesting global up- or
down-regulation. In particular, cluster 1 (A), manifested two globally up-regulated miRNAs (>75% and <100%) (B), cluster
2 (C), manifested five globally down-regulated miRNAs, which also consisted of a special case as they were down-regulated
in all samples (100%) (D) and 10 globally down-regulated miRNAs in >90% of all samples (E), cluster 3 (F) manifested
23 globally down-regulated miRNAs (>90%) (G) and cluster 4 (H) manifested 21 globally up-regulated miRNAs (>90%) in
all samples (I) (the arrow next to cluster number signifies the tendency of miRNAs in the respective cluster).
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Table 3. Common up- and down-regulated miRNAs across all CNS tumors. K-means clusters were also analyzed for the
presence of co-DE miRNAs in all samples. MiRNAs were considered to manifest a common pattern of expression if they
were globally up-regulated in at least >75% of all samples or down-regulated in at least >90% of all samples. All miRNAs
were sorted with respect to their cluster presence.

Inv. miRNA Pattern f f (%) K-Means Cluster Mean Expression

1 MIR376B Up-regulated 165 84.61 1 0.722
2 MIR372 Up-regulated 148 75.90 1 0.624

3 MIR149 Down-regulated 195 100.00 2 −5.491
4 MIR214 Down-regulated 195 100.00 2 −4.742
5 MIR574 Down-regulated 195 100.00 2 −4.975
6 MIR595 Down-regulated 195 100.00 2 −4.083
7 MIR765 Down-regulated 195 100.00 2 −5.690
8 MIR92B Down-regulated 182 93.33 2 −3.622
9 MIR939 Down-regulated 189 96.92 2 −3.225

10 MIR202 Down-regulated 190 97.43 2 −3.369
11 MIR921 Down-regulated 191 97.95 2 −3.527
12 MIR494 Down-regulated 193 98.97 2 −6.053
13 MIR665 Down-regulated 193 98.97 2 −4.835
14 MIR936 Down-regulated 193 98.97 2 −4.799
15 MIR575 Down-regulated 194 99.49 2 −3.731
16 MIR638 Down-regulated 194 99.49 2 −5.799
17 MIR933 Down-regulated 194 99.49 2 −4.271

18 MIR32 Down-regulated 176 90.25 3 −1.7540219
19 MIR557 Down-regulated 176 90.25 3 −1.2031172
20 MIR583 Down-regulated 177 90.77 3 −1.3094348
21 MIR675 Down-regulated 177 90.77 3 −1.8494352
22 MIR370 Down-regulated 178 91.28 3 −1.7722773
23 MIR760 Down-regulated 178 91.28 3 −1.4657573
24 MIR198 Down-regulated 179 91.80 3 −2.2433618
25 MIR210 Down-regulated 179 91.80 3 −2.3769263
26 MIR627 Down-regulated 179 91.80 3 −1.0966398
27 MIR650 Down-regulated 179 91.80 3 −2.0081156
28 MIR647 Down-regulated 180 92.31 3 −1.6223603
29 MIR632 Down-regulated 181 92.82 3 −1.5932408
30 MIR498 Down-regulated 183 93.85 3 −1.7145673
31 MIR608 Down-regulated 184 94.36 3 −2.4389162
32 MIR610 Down-regulated 184 94.36 3 −1.9065001
33 MIR564 Down-regulated 185 94.87 3 −2.1568429
34 MIR206 Down-regulated 186 95.38 3 −2.9338987
35 MIR671 Down-regulated 186 95.38 3 −1.6370801
36 MIR297 Down-regulated 188 96.41 3 −2.8914463
37 MIR637 Down-regulated 188 96.41 3 −3.1802687
38 MIR891A Down-regulated 188 96.41 3 −2.5938886
39 MIR185 Down-regulated 193 98.97 3 −2.8633022
40 MIR183 Up-regulated 176 90.26 4 −1.7540219
41 MIR889 Up-regulated 176 90.26 4 −1.2031172
42 MIR520H Up-regulated 177 90.77 4 −1.3094348
43 MIR563 Up-regulated 177 90.77 4 −1.8494352
44 MIR433 Up-regulated 178 91.28 4 −1.7722773
45 MIR519D Up-regulated 178 91.28 4 −1.4657573
46 MIR891B Up-regulated 179 91.79 4 −2.2433618
47 MIR631 Up-regulated 179 91.79 4 −2.3769263
48 MIR518B Up-regulated 179 91.79 4 −1.0966398
49 MIR367 Up-regulated 179 91.79 4 −2.0081156
50 MIR613 Up-regulated 180 92.31 4 −1.6223603
51 MIR651 Up-regulated 181 92.82 4 −1.5932408
52 MIR216A Up-regulated 183 93.85 4 −1.7145673
53 MIR374A Up-regulated 184 94.36 4 −2.4389162
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Table 3. Cont.

Inv. miRNA Pattern f f (%) K-Means Cluster Mean Expression

54 MIR599 Up-regulated 184 94.36 4 −1.9065001
55 MIR577 Up-regulated 185 94.87 4 −2.1568429
56 MIR190B Up-regulated 186 95.38 4 −2.9338987
57 MIR429 Up-regulated 186 95.38 4 −1.6370801
58 MIR567 Up-regulated 188 96.41 4 −2.8914463
59 MIR618 Up-regulated 188 96.41 4 −3.1802687
60 MIR581 Up-regulated 188 96.41 4 −2.5938886
61 MIR183 Up-regulated 193 98.97 4 −2.8633022
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Figure 9. K-means clustering of DE miRNAs with respect to second diagnosis (controls, benign or malignant tumors),
presented with the respective clusters (A), the centroids (B) and the sorted centroids (C). Cluster 4 manifested an ascending
pattern from malignant tumors to controls (D). The expression levels were found to be significantly different between
malignant and benign tumors, as well as between benign tumors and controls (Legend: I: Malignancy, II: Benign, III:
Controls. Expression values range in the negative domain because we have used the log2-transformed natural values, in
order to better visualize the differences).

An interesting pattern was also manifested with respect to tumor grading. We per-
formed k-means clustering (Figure 10A–C), where clusters 2 (Figure 10D), 3 (Figure 10E)
and 4 (Figure 10F) manifested as ascending pattern of expression. In particular, the control
samples had the lowest expression levels, compared to the tumor samples, followed by
tumors of grade IV and thereafter, by tumors of grades I, II and III. It apprears that the
transition from the control samples to the most aggressive tumor types is direct, while the
transition from lower tumor grades (I to III) follows a gradual pattern.
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Figure 10. Expression patterns of miRNAs with respect to tumor grade, utilizing k-means clustering. Tumor grade includes
the classification of tumors in five general categories: control and tumor grading from I to IV, which is presented with the
respective clusters (A), the centroids (B) and the sorted centroids (C). Clusters 2 (D), 3 (E) and 4 (F) manifested an ascending
motif from controls to grade IV, I, II and III. Significant differences between tumor grades are noted in the respective clusters
(Legend: I: tumor grade I, II: tumor grade II, III: tumor grade III, IV: tumor grade IV).

We also examined this pattern with respect to the log2-transformed ratios (tumors/
controls), and found a similar pattern (Figure 11). K-means clustering (Figure 11A–C)
manifested four clusters, where cluster 1 (Figure 11D) and cluster 3 (Figure 11E) manifested
the same interesting behavior as in the previously observed behavior; yet, when the control
samples were included, the only significant difference observed was between grades I and
IV (Figure 11E). However, in the case of cluster 4, tumor grade appeared to play a role in
miRNA expression, in an ascending order from grade I to grade III, followed by tumors of
grade IV (Figure 11F). Significant differences were manifested between tumor grades, as
presented in Figure 11F.

3.7. Functional Analysis of DE miRNAs

The next step included the examination of the commonly expressed miRNAs, as well
as those miRNAs that manifested expression patterns in each of the above-mentioned
tumor catogories, for their functional properties.
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Figure 11. Expression patterns of miRNAs with respect to tumor grade utilizing k-means clustering and the log2-transformed
ratios (tumors/controls). Tumor grade includes the classification of tumors into four general categories: tumor grading
from I to IV, which is presented with the respective clusters (A), the centroids (B) and the sorted centroids (C). Clusters 1
(D) and 3 (E) manifested an ascending pattern from controls to grade IV, I, II and III, while cluster 4 manifested an ascending
order from grade III to grade I and IV (F). Significant differences between tumor grades are noted in the respective clusters
(Legend: I: tumor grade I, II: tumor grade II, III: tumor grade III, IV: tumor grade IV).

3.7.1. Gene Ontology Enrichment Analysis of Commonly Expressed miRNAs

The globally co-DE miRNAs (i.e., up- or down-regulated across all CNS tumors) were
examined for their functional profiles, using Gene Ontology (GO) enrichment analysis. As
expected, the co-DE miRNAs were also involved in mRNA binding (Molecular Function),
gene silencing, regulation of developmental processes and vasculature morphogenesis
(Biological Process) and were located in the extracellular space (Cellular Component)
(Figure 12).

However, when separating the DE miRNAs into those being globally up-regulated
and down-regulated, we found that the first were annotated in less functions, which
included mRNA binding (Molecular Function) and gene silencing and the regulation of
gene expression (Biological Process) (Figure 13); meanwhile, the latter further participate
in the regulation of developmental processes and vasculature morphogenesis (Biological
Process) (Figure 14). It is noteworthy that it appeared that there was a distinct separation
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between the co-up- and down-regulated miRNAs with respect to their annotated functions,
signifying that down-regulated miRNAs affect more developmental properties and the
regulation of cell proliferation.
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3.7.2. The Special Case of Down-Regulated miRNAs across All CNS Tumor Samples

As aforementioned, our search for common miRNAs revealed five miRNAs (MIR149,
MIR214, MIR574, MIR595 and MIR765) that were down-regulated across all CNS tumor
samples (100% of all cases). Target prediction analysis showed that these miRNAs had 2893
unique mRNA targets. When examining the functional annotation of their mRNA targets,
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we found that they participated in functions such as neuronal morphogenesis (nervous
system development, generation of neurons, neuron projection development and neuron
projection morphogenesis, among others), axon formation, synaptic function, as well as
developmental processes (Figure 15 and Table 4).
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Figure 15. Functional annotation of the predicted mRNA targets for the co-downregulated miRNAs: MIR149, MIR214,
MIR574, MIR595 and MIR765 (Legend: MF: Molecular Function, BP: Biological Process, CC: Cellular Component, KEGG:
KEGG pathway database, REAC: Reactome pathway database, WP: WikiPathways, TF: Transcription Factor Binding Motifs,
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Complexes, HP: Human Phenotype Ontology).

3.7.3. Functional Analysis of the DE miRNAs Manifested Expression Patterns

Accordingly, we searched for the functional properties of the DE miRNAs with re-
spect to the ascending patterns observed either for diagnosis (Figure 9) or tumor grade
(Figures 10 and 11). The DE miRNAs that participated in cluster 4 (Figure 9) did not mani-
fest any significant functional annotations. On the contrary, the miRNAs that manifested
an expression pattern with respect to the tumor grade (Figures 10 and 11) were found to
participate in functions such as angiogenesis, blood vessel developmental processes and
vascularization, as well as cell proliferation (Figure 16). This was an interesting finding,
since it appeared that miRNAs participating in tumor grading were related to angiogenesis,
a significant characteristic of tumor growth.
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Table 4. The respective functional annotation of the predicted mRNA targets for the co-downregulated
miRNAs: MIR149, MIR214, MIR574, MIR595 and MIR765. The colors correspond to the annotation
colors presented in Figure 14 (Legend: MF: Molecular Function, BP: Biological Process, CC: Cellular
Component, KEGG: KEGG pathway database, REAC: Reactome pathway database, HPA: The Human
Protein Atlas).

Source Term Name −log10(p)

GO:MF SH3 domain binding 2.936
GO:MF Ras GTPase binding 1.731

GO:BP nervous system development 19.815
GO:BP generation of neurons 13.643
GO:BP neuron projection development 11.23
GO:BP neuron projection morphogenesis 9.512
GO:BP regulation of nervous system development 8.701
GO:BP central nervous system development 6.965
GO:BP cell morphogenesis involved in neuron differentiation 6.74
GO:BP regulation of neuron projection development 6.543
GO:BP axonogenesis 5.644
GO:BP synaptic vesicle cycle 4.855
GO:BP axon development 4.648
GO:BP neurotransmitter transport 4.407
GO:BP regulation of synaptic plasticity 2.796
GO:BP neurotransmitter secretion 2.601
GO:BP regulation of axonogenesis 2.352
GO:BP neuron projection guidance 2.344
GO:BP dendritic spine development 2.197
GO:BP central nervous system neuron axonogenesis 2.195
GO:BP synaptic vesicle exocytosis 2.078
GO:BP central nervous system neuron differentiation 1.375
GO:BP central nervous system projection neuron axonogenesis 1.345
GO:BP camera-type eye morphogenesis 1.332

GO:CC synapse 18.837
GO:CC neuron projection 11.917
GO:CC somatodendritic compartment 11.311
GO:CC dendrite 10.215
GO:CC dendritic tree 10.092
GO:CC neuron spine 3.125
GO:CC postsynaptic membrane 2.872
GO:CC neuron projection terminus 2.794
GO:CC main axon 2.58

KEGG Pathways in cancer 7.647
KEGG Axon guidance 4.293
KEGG MicroRNAs in cancer 3.479

REAC Neuronal System 3.262
REAC Axon guidance 2.046
REAC Nervous system development 2.046
REAC Transmission across Chemical Synapses 1.421
REAC Vesicle-mediated transport 1.391

HPA cerebral cortex; neuropil [Approved, Medium] 4.339
HPA cerebral cortex; neuropil [Approved, Low] 3.99
HPA cerebellum; cells in granular layer [Approved, Medium] 3.958
HPA cerebellum; cells in granular layer [Approved, Low] 3.439
HPA hippocampus; neuronal cells [Approved Low] 1.66
HPA cerebral cortex; neuropil [Approved, High] 1.507
HPA cerebral cortex; neuronal cells [Approved, Low] 1.47
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3.8. ROC Analysis of Globally Down-Regulated miRNAs

In order to investigate the diagnostic ability of the globally down-regulated miRNAs,
we also performed a receiver operating characteristic curve (ROC) analysis with respect to
the control and neoplasmatic samples. Confirming our previous observations, the five co-
downregulated miRNAs (MIR149, MIR214, MIR574, MIR595 and MIR765) could successfully
discriminate the controls and CNS tumor samples with an area under the curve (AUC) ≥ 0.925
(p < 0.001), corroborating their use as diagnostic markers (Figure 17A–E).
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(p < 0.001), corroborating their use as diagnostic markers (Legend: AUC: Area under the Curve).

4. Discussion

MicroRNAs are considered as key modulating molecules in cellular epigenetic pro-
cesses. In addition, they offer insight to many processes in normal and tumor cells. How-
ever, the study of miRNAs often involves hybridization-based microarray technologies, a
high-throughput technology, that may generate a large opportunity for errors when used
for testing their expression. Due to such limitations, all experiments must be regulated and
controlled to reduce the chances of error regarding the produced data. In addition, other
technologies must be implemented as a way to confirm the results of the microarrays.

In the present approach we used high throughput expression data and processed them
to find common expression patterns between different childhood CNS tumors. There are nu-
merous works concerning the role of miRNAs in CNS tumors, such as childhood embryonal
tumors [1,18,40–46], astrocytoma [24,47,48], glioblastoma [49–51], ependymoma [52] and
others. Yet, all the previous studies concerned the role of miRNAs in specific tumor types.

We followed a different approach, in which we introduced a novel concept of ex-
amining the role of miRNAs, simultaneously in the majority of the different CNS tumor
types. To the best of our knowledge, there are no previous works similar to this approach.
Although this type of approach could appear bold, it has several advantages. The identifi-
cation of global biomarkers for CNS tumors is very useful, since CNS tumors manifest a
challenge both due to their anatomic position as well as their severity. On the other hand,
therapy constitutes a real peril for patients, since even in the cases of benign neoplasms
both surgery and chemotherapy could prove dangerous for the patient. Thus, our skepsis
leans towards the identification of biomarkers that could be used in all CNS tumor cases. Is
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such an approach possible? It could prove to be a tedious task. Yet, our reasoning is based
on the hypothesis that tumors, irrespective of their type, follow a common machinery (at
least to an extent), which is still unidentifiable. No matter how different the tumor is, which
varies even from one patient to another, there are common signatures that lead oncogenesis,
but most importantly tumor ontogenesis. Therefore, the identification of such biomarkers
could be facilitated by similar approaches, such as the one presented here.

We found previously uncharacterized miRNA genes in pediatric CNS tumors, includ-
ing MIR149, MIR214, MIR574 and MIR765, apart from one study that reported MIR595
upregulation in glioblastoma compared to control cells, in vitro [53]. Other miRNAs were
also previously reported to regulate epithelial-to-mesenchymal transition (EMT) [54,55]
and participate in CNS tumors, such as MIR34A. The overexpression of miR-34a was
previously observed in pediatric ependymomas [56], pediatric pilocytic astrocytoma [17]
and in pediatric low- and high-grade astrocytoma [57], suggesting that it plays a global
oncogenic role in pediatric brain malignancies. miR-34 has been reported to be dysregu-
lated in various human cancers and regarded as a tumor suppressive microRNA because
of its synergistic effect with the well-known tumor suppressor p53 [58]. However, in this
study MIR34A was not within the top co-DE miRNAs.

Before further discussing the individual miRNAs with respect to the literature, we
need to note an interesting remark. Our sampling consisted of a large variety of CNS
tissues, where some included fetal and neonatal samples. It is certain that the developing
brain has a dynamic transcriptomic profile, which changes both spatially (with respect to
brain location) as well as temporally [21]. Thus, it is possible that an analysis comparing
tumor samples to normal brain tissue entails the problem of discovering different genes
due to the tissue’s developmental stages and not due to the differences in pathology.
First of all, it is important to highlight that in the case of CNS tumors one of the greatest
problems is the obtainment of control samples, since biopsies of normal CNS tissue are
extremely rare and difficult. Therefore, all available normal CNS samples are not to be
unthoughtfully disregarded. Therefore, our first observation is that such a possibility
cannot be ruled out. In order to completely remove this problematic, it is imperative to
match samples (patients and controls) by age or use as controls adjacent (to the tumor)
normal tissue. However, both approaches have their disadvantages. The first is that using
only specific age groups restricts the number of available samples as well as the global
temporal dynamics of gene regulation. On the other hand, using adjacent tissue that is
considered to be normal has the disadvantage of including micro-environmental effects
of the tumor on the nearby tissue [59–61]. A global approach has the disadvantage of
identifying genes similar to both tissues with respect to their developmental machinery,
yet this could also be an advantage. Another concept that we have to bear in mind is
that tumors utilize a large part of the developmental machinery for their ontogenesis (and
probably oncogenesis), which attributes to both normal developmental tissues and CNS
tumors a common transcription profile [62–66]. Let us suppose that differentially expressed
genes are found due to the difference in age (for example fetal/neonatal vs. child) and not
the pathological state. The presence of developmental genes as differentially expressed
indicates first of all that in tumors, developmental processes are active and most importantly
they are different from one type of tissue to the other and secondly, that the tumor utilizes
similar growth mechanisms to normal brain development [64,67]. Further on, in our study
we have found that globally up- or down-regulated miRNAs manifested developmental-
like functions, which confirmed the aforementioned reasoning. In addition, the identified
developmental processes were attributed probably to the globally down-regulated miRNAs,
which indicated that tumor tissues were utilizing the developmental machinery. Finally,
there is a diversity in the use of control samples throughout the literature, where several
studies have used age-matched [22] samples and others did not [19,20,24].

Interestingly, the majority of the co-DE miRNAs were found to be up-regulated
(n = 261), and less down-regulated (n = 145). Yet, the co-down-regulated miRNAs man-
ifested their DE profile in more tumor samples compared to the up-regulated ones. For
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example, five miRNAs were found to be down-regulated simultaneously across all CNS
tumors, while no miRNA was found to be up-regulated in all the tumor samples. It is
noteworthy that the down-regulated miRNAs participated in more functions, including
the regulation of developmental processes, while the up-regulated miRNAs participated in
many less functions. Yet, the up-regulated miRNAs are of greater importance with respect
to therapy, since the over-expressed miRNAs can be inhibited using oligonucleotides that
are perfectly complementary to their mature miRNA targets, whereas the transfection
of miRNA mimics (chemically synthesized double-stranded RNA molecules) to imitate
mature miRNA duplexes, a more difficult task. The difficulty lies in that it is unclear
whether the transfected miRNAs behave similarly to endogenous miRNAs.

Although many of the up-regulated miRNAs that we found are not known to partici-
pate in CNS tumors, MIR183 has been previously reported to be up-regulated in glioblas-
toma [68] and glioma [69–71]. In addition, there are two contradictory reports regarding
MIR433. One study reported that MIR433 down-regulation is connected to tumor sup-
pression [72], which was in agreement with our study, whereas another mentions that
MIR433 up-regulation has tumor suppressive effects [73]. Regarding MIR519D we found
only one report, stating that this miRNA is down-regulated in CNS tumors [74], conferring
tumor suppressive properties; in contrast, we found that MRI519D is overexpressed in the
majority of the CNS tumors. At the same time, MIR518B was up-regulated and reported
to manifest tumor suppressive properties in glioblastoma [75,76]. Interestingly, MIR367
was recently found to function as tumor promoting miRNA, since its inhibition attenuates
tumor aggressiveness and proliferation in embryonal tumors [77–79]. On the other hand,
MIR613 was reported to act as a tumor suppressor, inhibiting glioma progression [80],
while we found it up-regulated in the majority of the CNS tumors. Similarly, MIR216A
has been reported to manifest tumor suppressing properties in glioma cells, yet it is also
found that its role has been contradictory, as it participates either as tumor suppressor or
oncogene depending on the tumor type [81]. In our study, MIR216A was up-regulated in
the majority of the examined CNS tumors, suggesting that it functions as an oncogene. A
contradictory finding concerned MIR599, which was found to be upregulated and probably
act as an oncogene. Yet, MIR599 was reported in two studies to act as a tumor suppressor
in glioma tumors, as it was found to be down-regulated [82,83]. Finally, MIR577 [84–86]
and MIR429 [87,88] were previously reported to act as tumor suppressors in gliomas, while
we have found them to function as oncogenes in the global setting of CNS tumors.

The present approach is reported previously in the literature. To the best of our
knowledge, this is the first time such a reasoning is presented in the literature. In a
previous work we have performed a similar approach for urinary bladder cancer, where
we have reported that a single gene (CDC20) manifested a common profile among different
subtypes of urothelial bladder cancer [89]. In the meantime, CDC20 was confirmed to
be a molecule of interest for prognosis and therapy [90–92]. Thus, the present approach
could also prove useful for the detection of therapeutic strategies. One drawback to the
present approach is that several of the identified miRNAs are still unknown for their role
in CNS tumors and, therefore, a series of functional investigations are required not limited
to the validation of the expressional profile, but extended to the actual verification of
miRNA targets.

In summary, the current study provides significant insights in the growing role of
miRNA signatures in pediatric CNS neoplasms of different type, such as medulloblastomas,
ATRTs, astrocytomas, ependymomas, glioblastomas and others. In general, we found good
evidence that miRNAs manifest global patterns of co-deregulated expression across all
CNS tumor types. Collectively, our findings highlight miRNAs that could be used as novel
molecular biomarkers with a promising potential in pediatric CNS malignancies.
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5. Conclusions

The present study proposed a novel approach to investigate the miRNA-related
mechanisms across different types of pediatric CNS tumors. Interestingly, we found
miRNAs that were globally down- and up-regulated in all CNS tumor samples. Our
approach could be useful in the discovery of novel therapeutic markers for CNS tumors,
yet further research is required in order to confirm miRNAs’ functions.
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