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Simple Summary: Metastasis, the process by which cancer cells escape primary tumor site and
colonize distant organs, is responsible for most cancer-related deaths. The tumor microenvironment
(TME), comprises different cell types, including immune cells and cancer-associated fibroblasts,
as well as structural elements, such as collagen and hyaluronan that constitute the extracellular
matrix (ECM). Intratumoral interactions between the cellular and structural components of the TME
regulate the aggressiveness, and dissemination of malignant cells and promote immune evasion.
At the secondary site, the TME also facilitates escape from dormancy to enhance metastatic tumor
outgrowth. Moreover, the ECM applies mechanical forces on tumors that contribute to hypoxia
and cancer cell invasiveness whereas also hinders drug delivery and efficacy in both primary and
metastatic sites. In this review, we summarize the latest developments regarding the role of the TME
in cancer progression and discuss ongoing efforts to remodel the TME to stop metastasis in its tracks.

Abstract: The tumor microenvironment (TME) regulates essential tumor survival and promotion
functions. Interactions between the cellular and structural components of the TME allow cancer cells
to become invasive and disseminate from the primary site to distant locations, through a complex
and multistep metastatic cascade. Tumor-associated M2-type macrophages have growth-promoting
and immunosuppressive functions; mesenchymal cells mass produce exosomes that increase the
migratory ability of cancer cells; cancer associated fibroblasts (CAFs) reorganize the surrounding
matrix creating migration-guiding tracks for cancer cells. In addition, the tumor extracellular matrix
(ECM) exerts determinant roles in disease progression and cancer cell migration and regulates
therapeutic responses. The hypoxic conditions generated at the primary tumor force cancer cells
to genetically and/or epigenetically adapt in order to survive and metastasize. In the circulation,
cancer cells encounter platelets, immune cells, and cytokines in the blood microenvironment that
facilitate their survival and transit. This review discusses the roles of different cellular and structural
tumor components in regulating the metastatic process, targeting approaches using small molecule
inhibitors, nanoparticles, manipulated exosomes, and miRNAs to inhibit tumor invasion as well
as current and future strategies to remodel the TME and enhance treatment efficacy to block the
detrimental process of metastasis.

Keywords: tumor microenvironment; immune system; metastasis; drug delivery; cancer therapy

1. Introduction

Metastasis is responsible for more than 90% of cancer mortality; however, the underly-
ing mechanisms driving this multistep process, ranging from local invasion at the primary
site to the outgrowth of metastatic cells at the secondary sites, remain elusive. The commu-
nication between the neoplastic cells and the adjacent stromal cells begins at the earliest
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stages of tumor formation and continues during primary growth, local invasion, intravasa-
tion and establishment at the secondary site. While it was initially established that genetic
aberrations are predominantly responsible for tumor initiation and progression [1], it has
become clear during the last two decades that the tumor microenvironment (TME) plays
an equally important role in modulating the aggressiveness, motility, dissemination, and
colonization of cancer cells to distal organs [2]. The TME comprises the extracellular matrix
(ECM) and basement membrane (BM), endothelial cells, adipose cells, tumor-infiltrating
immune cells, cancer-associated fibroblasts (CAFs), neuroendocrine cells, pericytes, as
well as a plethora of signalling molecules that regulate tumor progression. Cancer cells
secrete growth factors and cytokines (including IL-6, IL-1β, TGF-β1, TGF-β2, FGF-2, and
PDGF) that recruit and reprogram stromal cells, such as immune cells and fibroblasts, as
well as enzymes that degrade and remodel the surrounding ECM and BM, such as matrix
metalloproteinases (MMPs). In this review, we summarize the latest findings in the efforts
for understanding the complex roles of TME constituents in various stages of metastatic
progression and discuss about strategies as well as future challenges for targeting TME
components to battle the most aggressive forms of the disease.

2. Roles of Cellular TME Components in Regulating the Metastatic Cascade
2.1. Role of Immune Cells in Modulating Cancer Metastasis

It is unambiguously accepted that immune cells exert pivotal effects in the properties
of cancer cells at different stages of the invasion-metastasis cascade, either by infiltrating
the tumor or by affecting the systemic environment [3]. During every step of this lethal
process, cancer cells are being exposed to the immune system which attacks them to restrain
their growth [4]. These anti-tumor effects are primarily mediated by CD8+ T cells as well
as natural killer (NK) cells, which have been shown to restrict metastatic outgrowth of
tumor cells, whereas their depletion enhances metastasis without affecting primary tumor
growth [5–7]. However, during tumor evolution, cancer cells develop strategies not only to
avoid immune surveillance but also to induce systemic responses by exploiting types of
immune cells, such as myeloid cells, in order to enhance their metastatic efficiency [8].

The main type of myeloid cells implicated in regulating metastasis are macrophages,
which are derived by hematopoietic stem cells (HSC) in the bone marrow and considered
“professional” antigen presenting cells (APCs) [9]. They present foreign antigens to helper
T cells and can prime naïve T cells. Macrophages are recruited to the tumor site via
chemokines produced from cancer and stromal cells and are, thus, referred to as tumor-
associated macrophages (TAMs). TAMs can act in two opposing functions depending
on their polarization subtype: M1-type TAMs have pro-inflammatory and anti-tumoral
properties and activate the immune system by releasing interferon (IFN)-γ and IL-12.
On the other hand, M2-type TAMs are pro-tumorigenic, and exert immunosuppressive
functions by producing IL-10, induce angiogenesis and stimulate tumor cells to release
MMPs that favor cancer progression by disrupting the ECM and BM [10,11].

TAMs enable metastasis at various stages of the process, including activation of
epithelial-to-mesenchymal transition (EMT), local invasion, and intravasation into the
blood stream, transfer of cancer cells through the circulation, extravasation, and seeding
at the secondary site, and finally promotion of survival and outgrowth of cancer cells at
distant organs [12,13]. They achieve this by secreting numerous chemokines, inflammatory
molecules, and growth factors that promote metastatic progression.

At the primary tumor site, TAMs help create a suitable microenvironment that allows
tumor invasion [14]. The term “tumor microenvironment of metastasis” (TMEM) is pro-
posed to describe the close arrangement of cancer cells, perivascular TAMs, and endothelial
cells often located at sites of intravasation. Increased TMEM density in breast carcinoma
patient samples positively correlates with increased risk of distant organ metastases [15].
During EMT, growth factors and cytokines, including TGF-β, Wnt, and EGF, can lead to
the activation of an orchestrated transcriptional program during which tumor cells lose
epithelial characteristics and gain mesenchymal features leading to increased capacity for
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invasion and metastasis [16,17]. Inflammation-induced EMT has also been reported and
TAMs appear to play an important role in this transition. In hepatocellular carcinoma
(HCC), TAMs are recruited by cancer cells by expressing glypican and secrete TGF-β,
PDGF, VEGF, chemokine (C-C motif) ligand 2 (CCL2), and M-CSF [18,19]. In the tumor
microenvironment, TAMs secrete many cytokines such as TGF-β and IL-6 that can induce
EMT [20]. In pancreatic cancer, M2-polarized TAMs expressing Toll-like receptor 4 (TLR4)
promoted EMT via TLR4/IL-10 signaling. Specifically, TAMs upregulated mesenchymal
markers vimentin and snail, induced MMP-2 and MMP-9 proteolytic activity and dimin-
ished E-cadherin levels, leading to increased fibroblastic morphology, proliferation, and
migration of pancreatic cancer cells [21]. TAMs exhibiting a CD68+HLA−DR+ surface
marker phenotype can induce migration of HCC cells via the NF-κB/FAK pathway [22].
TAMs can further facilitate the invasiveness of cancer cells induced by phosphatase of
regenerating liver (PRL-3), a marker of colorectal cancer (CRC) liver metastasis. CRC
cells also produce PRL-3 and tumor necrosis factor-α (TNF-α) that increase the expression
of intermediate-conductance Ca2+-activated potassium (KCNN4) channels in TAMs [23];
KCNN4 induce the secretion of IL-6 and IL-8 by TAMs and improve CRC cell invasive-
ness [24]. In addition, TAMs can release CCL18 chemokine that can stimulate angiogenesis
and promote tumor progression in breast cancer [25]. In addition to their role in regulating
migration and invasion of primary tumor cells, TAMs also mediate crucial functions on
cancer cells disseminated at secondary tissues [26].

The term “metastasis-associated macrophages” (MAMs) is proposed to describe the
role of macrophages that have infiltrated at the metastatic site. MAMs are essential for
the extravasation of circulating tumor cells (CTCs) and their successful outgrowth at the
secondary site, partly through VEGF expression [27]. The expression of CCL2 and the
infiltration of the tumor site by macrophages have been correlated with metastatic disease
in breast cancer [28,29]. MAMs that originate from inflammatory monocytes (IMs), are
recruited to secondary sites along with monocytes expressing the CCR2 receptor. The
stroma, as well as the tumor itself, are responsible for attracting these cells at the metastatic
site by expressing CCL2 [30]. CCR2 activation following binding to CCL2 in MAMs,
induces the secretion of the chemokine ligand CCL3 by macrophages at the metastatic
site; this enables the retention of macrophages at the lung and increases the number
of lung metastatic foci, whereas inhibition of CCR1, the receptor of CCL3, may have
therapeutic implications in breast cancer lung metastasis [31]. Moreover, vascular cell
adhesion molecule-1 (VCAM-1) expressed in breast cancer cells has been associated with
lung metastasis relapse [32]. Following infiltration of breast cancer cells to the leukocyte-
rich microenvironment of the lung, VCAM-1 provides a survival advantage by tethering
MAMs to cancer cells via counter-receptor α4 integrins [32].

2.2. Role of Mesenchymal Stem Cells in Regulating Metastasis

Mesenchymal stem (or stromal) cells (MSCs) are multipotent stem cells that reside
in many adult tissues, such as the bone marrow, adipose tissue, liver, lung, periosteum,
muscle connective tissue, and spleen. They are important for generating and repairing
skeletal tissues, such as cartilage and bone [33]. MSCs reside in most tumors and signifi-
cantly influence the development and function of the TME. These cancer-associated MSC
(CA-MSC) are reprogrammed by the tumor to exert pro-tumorigenic functions, such as
enhancing EMT, promoting angiogenesis and metastasis.

Importantly, MSCs facilitate metastases by secreting exosomes which interact with
cancer cells to affect their proliferation and migration [34,35]. They are the only type of
cells that can mass produce exosomes [36]. Exosomes derived from MSCs are microvesicles
(60–200 nm size) that have a phospholipid bilayer carrying proteins, lipids, miRNAs
and mRNA [37]. They act in a paracrine fashion and can be detected in various body
fluids [38]. In a breast cancer model, treatment with MSC-exosomes led to an enhanced
migratory ability, through increased β-catenin levels and activation of WNT pathway
target genes, Axin2 and Dkk1 [39]. Gastric cancer tissue-related mesenchymal stem cells
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(GC-MSCs), excrete exosomes carrying miRNAs that following delivery into gastric cancer
cells can promote gastric cancer metastasis [40]. Particularly, the expression of miR-221 was
significantly increased and correlated with enhanced local invasion, advanced tumor-node-
metastasis stage, and lymphatic metastasis [41]. Overall, the presence of MSC-derived
exosomes induced an EMT program and promoted migration and invasion of HGC-27
gastric cancer cells [42]. Bone marrow-derived mesenchymal stem cells (BM-MSCs), can
also promote the migration of multiple myeloma cells by producing exosomes which
selectively carry cytokines, such as chemotactic proteins MCP-1, MCP-2, MCP-3, 40 SDF-1,
41,42, and IGF-1 [43].

Contradicting to these reports, MSCs were also found to suppress metastatic tumor
growth through their excreted exosomes carrying different strands of miRNAs. MSCs that
interact with disseminated breast cancer cells in the bone marrow during the early stages
of dissemination, promote cancer cell dormancy and enable an extended period of cycling
quiescence in which cancer cells are maintained in G0/G1 phase of the cell cycle [44,45].
MSCs that produce exosomes with increased miR-23b and decreased MARCKS expression
suppress cell cycle and promote dormancy of metastatic breast cancer cells [46,47].

2.3. Cancer-Associated Fibroblasts in Promoting Metastasis

CAFs constitute one of the most abundant stromal components in solid tumors. CAFs
are distinguished from different cell subtypes based on the presence of several stromal
markers, including integrin β1 (CD29), fibroblast activation protein (FAP), and α-smooth
muscle actin (α-SMA) [48,49]. CAFs can be derived from different cell types of the TME: lo-
cal fibroblasts that undergo mesenchymal–mesenchymal transition (MMT), epithelial cells
via epithelial-to-mesenchymal transition (EMT), endothelial cells following endothelial-
to-mesenchymal transition (endMT), bone marrow originated from hematopoietic stem
cells or mesenchymal stem cells and adipocytes [50]. Cancer cells can activate fibroblasts
in a three-step process: recruitment, transformation to CAFs, and maintenance in the
TME. Following their activation, CAFs release signaling molecules to favor the survival of
cancer cells and promote the recruitment and transformation of other cell types within the
TME [51]. CAFs facilitate remodelling of the ECM by releasing collagen and fibronectin,
producing MMPs, and increasing VEGF levels. This leads to the re-organization of the
matrix, creating tracks which neoplastic cells exploit to directionally migrate, accompanied
by CAFs [52–57].

The presence of a specific subset of CAFs in the microenvironment, CAF-S1, was
recently shown to suppress the immune system by attracting and promoting the survival,
differentiation, and activation of CD4+CD25+ T lymphocytes [49]. In addition, in women
with primary tumors smaller than 2 cm without lymph node metastasis, the presence
of CAF-S1 cells favors breast cancer metastasis to the bone via CDH11/osteoblast cad-
herin [58].

2.4. Endothelial Cells Attract Cancer Cells to the Metastatic Site

The lymphatic vessels that support the tumor at the secondary site are lined with
loosely-connected lymphatic endothelial cells (LECs) that may also promote metasta-
sis [59,60]. LECs recruit tumor cells by producing chemoattractants, such as CCL21 and
SDF-1, which bind to CCR7 and CXCR4 receptors expressed in cancer cells, respectively [61].
Tumors developing at secondary organs produce factors that condition LECs to facilitate
with cancer cell recruitment, extravasation, and outgrowth [62]. One example is the secre-
tion of IL-6 by tumor cells that leads to STAT3 activation in LECs and subsequently high
VEGF expression [62]. The expression of VEGF induced by tumor cells has been associated
with the activation of HIF-1 in LECs, suggesting that tumor-secreted factors may support
and direct lymphatic metastasis.
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2.5. Components in the Blood Microenvironment That Facilitate Metastasis

During their dissemination throughout the body, circulating tumor cells (CTCs) en-
counter other cell types and factors in the peripheral blood that facilitate not only their
survival but also their metastatic ability. These include various components, such as
platelets, immune cells, cytokines, and circulating tumor microemboli (CTMs), which
interact with CTCs and promote their survival [63]. Metastatic tumor cells can induce
platelet adhesion and aggregation through the production of platelet activators such as
ADP, thrombin, thromboxane, and von Willebrand factor [64]. Platelets enable the survival
of cancer cells during their transit within the blood circulation and their colonization at
the secondary site [65]. Platelets are a major source of lysophosphatidic acid (LPA), a
natural lysophospholipid, which can bind to six different G-protein coupled receptors
(GPCRs—LPA1-6 receptors) expressed on eukaryotic cells and activate multiple intracel-
lular signaling pathways involved in cell survival, proliferation, differentiation, motility,
cytoskeleton rearrangement and cytokine secretion [66]. Tumor cells induce platelet aggre-
gation and production of LPA. Autotaxin (ATX), a lysophospholipase D also produced and
released in platelet α-granules, is responsible for the basal concentration of LPA in blood.
LPA interacts with different GPCRs found on cancer cells and promotes metastasis. The
presence of certain cytokines in serum, including IL-17A, has also been correlated with
increased number of CTCs and metastatic burden [67,68].

3. Role of Extracellular TME Components in Tumor Progression
3.1. Role of the ECM in Cancer Metastasis

Similar to stromal cells, the non-cellular component of the TME, the ECM, exerts
determinant roles in tumor progression and metastasis. ECM is defined as a network of
extracellular proteins and other macromolecules, including collagen, fibronectin, hyaluro-
nan, elastin, integrins, microfibrillar proteins, and proteoglycans that provide structural
and biochemical support to the tissue. ECM is present at the BM and interstitial space and
regulates cell proliferation, differentiation, and tissue homeostasis [69]. Under pathological
conditions like tumorigenesis, it functions as a biological barrier restraining tumor cells
from proliferating and metastasizing. However, during tumor progression, ECM is remod-
eled and transformed into a metastasis-promoting microenvironment [70]. Such structural
rearrangements involve the excessive production of collagen in the interstitial matrix and
subsequent development of fibrosis, a hallmark of many desmoplastic tumors [71]. This
fibrotic response predominantly occurs due to TGF-β-mediated activation of CAFs, which
are the major drivers of collagen synthesis. Fibrosis involves not only upregulation of
collagen but also Lysyl oxidase (LOX)-induced cross-linking of collagen fibers further
causing tumor stiffening [72]. Individuals with high mammographic density (i.e., a greater
accumulation of connective tissue to fat) are in greater risk for breast cancer develop-
ment [73,74]. Furthermore, the differentially stiffened stroma combined with tumor cell
overpopulation in a physically restricted area impose the development of compressive
mechanical forces within the tumor, known as solid stress [75]. It has been estimated in
humans that this growth-induced solid stress can be as high as 142.4 mmHg (19.0 kPa) [76].
Cancer cells respond to stiffness and mechanical compression by undergoing actomyosin
and cytoskeleton contraction facilitating the formation of traction forces on their surround-
ings. Tumor cells become hyper-responsive to these matrix compliance cues, which are
propagated intercellularly via mechanosensors, such as integrin-ECM complexes, growth
factors and p130-associated proteins. Upon stimulation, mechanosensors transduce the
signal to focal adhesion signaling molecules including small Rho-GTPases, FAK, SRC,
paxillin, and RAS GTPase to activate downstream signaling cascades to promote malig-
nancy [75,77–83]. In pancreatic cancer, solid stress can either activate fibroblasts or directly
act on pancreatic cancer cells to promote migration via the GDF15-Akt pathway [84,85].
Moreover, mechanical compression facilitates migration of glioblastoma cells by inducing
Mek1/Erk1 signaling [86]. Overall, tumors possessing a dynamic stiffened ECM are often
highly metastatic and correlate with poorer patient outcome [72,78,87–89].



Cancers 2021, 13, 2053 6 of 22

3.2. Hypoxic Microenvironment as a Major Driver of Cancer Metastasis

Solid stress and tumor stiffening contribute to metastasis not only by increasing
directly the invasive and metastatic potential of cancer cells but also by inducing hypoxia.
Specifically, the acquisition of solid stress can largely deform the surrounding tissue and
compress or even collapse intratumoral lymphatic and blood vessels resulting in poor
perfusion [90]. Tumor cells which have been deprived of oxygen and nutrients trigger the
expression of pro-angiogenic factors such as VEGF, to induce the de novo formation of
blood vessels ensuring the adequate supply of O2 and nutrients to the tumor. However,
these “neovessels” are tortuous and leaky. The lack of intercellular junctions between
endothelial cells and poor pericyte coverage foster an uneven distribution of blood flow.
Consequently, in response to local hypoxia, the protein levels of hypoxia inducible factors
(HIFs) increase and play a major role in regulating this process by promoting the survival
of cancer cells under hypoxic conditions [91]. HIF is a heterodimeric transcription factor
comprised of HIF-1α or HIF-2α and HIF-1β subunits. HIF interacts with its co-activator
CBP/p300, and binds to hypoxia response elements located in target gene promoters to
activate them [92].

During hypoxia, cancer cells change their metabolic activities by switching from ox-
idative phosphorylation to aerobic glycolysis which causes acidification of the extracellular
space. Acidosis is a major physiological parameter of TME linked to hypoxia which allows
the survival of selected cells that can adapt to these acidic conditions. As tumor cells
undergo rapid rounds of proliferation, the energy consumption dramatically increases
resulting in oxygen deprivation. To meet the biosynthetic requirements, tumors shift into
aerobic glycolysis, known as Warburg effect, whereby glucose is converted into lactate,
followed by lactic acid fermentation in the cytosol. The excess of lactate is then released in
the TME along with other acidic materials, establishing an acidic environment. Importantly,
the pH of tumors can decrease to 5.7 compared to the pH of healthy tissues which is 7.4.
This pH reduction is even more striking in the lysosomes and endosomes, where it ranges
from 4.5 to 5.5 and, thus, may interfere with the activity of therapeutic agents which utilize
these structures for their intracellular transport [93–95].

Induction of hypoxia activates a vicious circle of downstream signaling cascades to
promote responses that define cancer hallmarks, including metabolic reprogramming,
mesenchymal transformation of cells, proliferation, survival, angiogenesis, migration,
invasion, immunosuppression, and metastasis [96]. Approximately 50–60% of solid tumors
exhibit hypoxic regions where O2 tension can be low (<10 mmHg) and heterogeneously
distributed within the tumor. Hypoxia affects the TME and puts selective pressure on
cancer cells that develop genetic and/or epigenetic adaptive changes in order to survive
and in combination with the formation of new vessels, mainly at the tumor periphery,
eventually metastasize to distant sites [97–99].

4. Targeting Cellular Constituents of the TME to Block Metastasis
4.1. TAMs as a Promising Target against Cancer Metastasis

Targeting TAMs at the primary site has been a promising approach to combat metastatic
disease. As described above, the presence of TAMs at the primary tumor site has been
correlated with progressive disease and metastasis. Specifically, these cells enable EMT
and help cancer cells escape towards the circulation. To block this metastasis enabling
step, the role of JWH-015, a cannabinoid receptor 2 (CB2) agonist previously shown to
suppress lung cancer progression [100], was investigated. JWH-105 inhibited EMT in
non-small cell lung cancer cells (NSCLC) by suppressing ERK and STAT-3 activation and
EGFR signaling; in addition, JWH-105 reduced invasiveness of A549 cells when co-cultured
with M2 macrophages, by downregulating the expression of FAK, VCAM1, and MMP-2.
The effects of the inhibitor were also confirmed using a syngeneic mouse model, where
it blocked tumor growth in vivo and inhibited macrophage recruitment and EMT at the
primary tumor [101]. TAMs are recruited to the tumor site by colony-stimulating factor-1
(CSF-1/M-CSF) to enhance their survival, differentiation and proliferation [102]. CSF-1 is
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a potent macrophage chemoattractant produced by cancer cells to recruit macrophages
expressing the CSF-R1 receptor and polarizes them towards the M2-tumor promoting
subtype [103]. Blocking CSF/CSFR interaction inhibits the pro-tumoral activities of TAMs
and their ability to promote metastasis [104] (Figure 1).
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JWH-015, a CB agonist, blocks macrophage recruitment, while other agents inhibit the interaction between CSFR and CSF
produced by cancer cells. Bisphosphonates can block MMPs produced by CAFs and other types of cells and impair cancer
cell invasion. CAIX produced under hypoxic conditions may be inhibited by small molecules, like AAZ. In the blood
TME, blocking platelet interaction with CTCs as well as regulating cytokine content, such as of IL-17A, can effectively
reduce metastatic burden. At the secondary site, bisphosphonates, including clodronate, can reduce the number of TAMs.
Exosomes produced by manipulated MSCs can deliver anticancer therapeutics, such as Taxol, to inhibit distant metastases.
INF-γ blocks the polarization of M1 macrophages to the M2-tumor promoting phenotype. Galunisertib can inhibit TGF-β
signaling induced in the tumor by CAFs and is effective when combined with anti-PD-1 therapy, to promote T-cell activation.

Macrophages can also be targeted at the secondary metastatic site using chemical
molecules. Liposomal encapsulation of clodronate (dichloromethylene diphosphonate),
a bisphosphonate that acts by targeting osteoclasts and cancer cells, has been used to
treat bone metastasis [105,106]. In addition, treatment with clodronate-liposomes is a
well-established method for macrophage ablation [107]. The inhibition of metastasis by
clodronate-liposomes may, therefore, be attributed to the depletion of osteoclasts precur-
sors as well as TAMs. A distinct macrophage subpopulation (CD11b+Gr1−), was found to
mediate extravasation and outgrowth of breast cancer cells to the lung. Treatment with
liposomes bearing clodronate significantly reduced the number of tumor cells in murine
lungs [27]. Using mice bearing lung tumors, liposomal delivery of clodronate was also
shown to reduce the number of monocytes in peripheral blood and of macrophages in tu-
mors, and to inhibit bone and muscle metastasis [108]. In a sorafenib-resistant tumor model,
lung metastasis was inhibited following photoimmunotherapy targeting TAMs [109]. More-
over, dequalinium-14, an anti-tumor agent, was effective in reducing TAM motility and
infiltration of irradiated tumors and blocked metastasis in a locally irradiated mouse model
of CRC [110].
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As previously mentioned, TAMs fuel cancer cells with pro-angiogenic factors within
the TME to facilitate metastasis. One of the major factors that induce angiogenesis secreted
by TAMs is MMP-9 that promotes the vascular development in avascular tumors and
enables tumor cell intravasation [111,112]. However, targeting MMPs to reduce metastasis
with the use of bisphosphonates has shown limited efficacy in pre-clinical and clinical
studies [113–115]. The ability of TAMs to induce angiogenesis in tumors by secreting VEGF
into the TME, was blocked in an in vivo model of gallbladder cancer, by intratumorally
injecting IFN-γ. IFN-γ can inhibit the differentiation of monocytes to the tumor-promoting
M2 macrophages in the TME, can switch TAMs from M2 into M1 subtype, blocking their
ability to secrete VEGF [116]. The polarization of TAMs to the M2 phenotype can also
be blocked by Luteolin which inhibits the IL4-mediated activation of STAT6, reduces the
expression of M2-associated genes and suppresses TAM-secreted CCL2 to inhibit migration
of Lewis lung carcinoma cells [117]. Finally, blocking the interaction of prostate cancer cells
and TAMs, inhibited their proliferation, migration, and invasion as well as tumor growth
in vivo [118].

4.2. Exploiting Cancer-Associated Mesenchymal Stroma/Stem-Like Cells to Control Metastasis

As discussed above, MSCs that associate with tumors excrete exosomes that carry
components that affect the TME to promote or inhibit metastasis. MSCs can also be manipu-
lated to deliver anti-cancer drugs to the tumor site [119]. In one study, several human MSC
populations were treated with sub-lethal concentrations of taxol and exosomes carrying
this drug were isolated. These taxol-loaded exosomes displayed enhanced cytotoxicity
in cancer cell lines in vitro. Systemic intravenous administration of MSC-derived taxol-
loaded exosomes in vivo significantly reduced the growth of subcutaneous primary highly
metastatic MDA-hyb1 breast tumors. Importantly, the treatment also led to a significant
reduction of distant metastases in the lung, liver, spleen, and kidney [120]. Moreover, MSCs
loaded with paclitaxel strongly inhibited lung metastasis of murine melanoma [121].

In addition, MSCs delivering miR-124 and miR-145 synthetic mimics to co-cultured
glioma cells significantly decreased their migration by targeting SCP-1 and Sox2 genes,
respectively [122]. MSCs producing exosomes that deliver the synthetic miR-143 to os-
teosarcoma cells can significantly reduce their migration [123]. Manipulated therapeutic
stem cells encapsulated in biodegradable, synthetic extracellular matrix (sECM) that could
release tumor-selective S-TRAIL, eliminated tumor cells in a glioblastoma mouse model
and significantly prolonged animal survival [124].

4.3. Targeting the Blood Microenvironment

Functional blocking of platelet activity leads to inhibition of cancer cell metastasis.
Anti-platelet drugs have been explored in cancer treatment. Resting platelets are activated
by ADP produced by cancer cells. APT102, an ADPase that can block platelet function,
was able to disrupt bone metastasis in mice when combined with aspirin [125]. In addition,
blocking the LPA/ATX signaling axis has been shown to be effective against metastasis.
Treatment of animals with the BMP22 ATX inhibitor, inhibited cancer cell colonization to
the bone [126]. In addition, taking advantage of the interaction of platelets with CTCs may
be a promising therapeutic approach against metastasis. Genetically modified platelets that
express TRAIL can significantly eliminate the tumor cells in vitro and suppress metastasis
in a prostate cancer mouse model [127].

Regulating the cytokine content of peripheral blood may also help reduce tumor
burden. IL-17A, a pro-inflammatory cytokine, has emerged as a critical factor in enhancing
breast cancer metastasis. The systemic neutralization of IL-17A significantly reduces breast
cancer metastasis in mice by reducing expression of CXCL12/SDF-1 in the metastatic
niches [128]. When cancer cells pass through organs with high levels of the chemokine
SDF-1/CXCL12, they exit circulation and extravasate [129]. The ablation of IL-17A and
treatment with granulocyte-macrophage colony-stimulating factor (GM-CSF) causes a
decline in the number of CTCs and decreased metastasis in mice (Figure 1). GM-CSF
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administration polarized the TAMs toward the M1 phenotype, elevated the number of
CD4+ and CD8+ T lymphocytes and NK cells and eliminated CTCs [67].

5. Strategies to Improve Tumor Oxygenation and Therapeutic Efficacy

As described above, the dense ECM and the solid stress applied in desmoplastic
tumors contribute to metastasis not only by increasing directly the invasive and metastatic
potential of cancer cells but also by inducing hypoxia and hindering drug delivery owing
to hypo-perfusion caused by vessel compression [130,131]. There are two main strategies
to overcome these physiological abnormalities of the TME: (i) the vascular remodeling and
(ii) the stroma normalization strategy.

5.1. Remodeling the Tumor Vasculature

In contrast to vascular disruption, the vascular normalization strategy involves the
restoration of a functional vasculature that closely resembles the normal and is mediated
by increasing the pericyte coverage of endothelial cells, limiting leakiness of blood vessels
and, thus, increasing tumor perfusion and oxygenation. This approach alleviates the ge-
ometric obstruction against blood flow and re-establishes the balance between pro- and
anti-angiogenic signaling [132,133]. A classical therapeutic target of vascular normalization
is VEGF signaling, which is upregulated in most tumors. Bevacizumab, the first approved
anti-angiogenic drug, and its derivatives are currently used for the treatment of metastatic
CRC [134]. Bevacizumab interacts with soluble VEGF preventing receptor binding. To
avoid tumor acquired resistance, these anti-angiogenic drugs are used in combination with
tyrosine receptor kinases inhibitors (e.g., sorafenib, and sunatinib) acting downstream
in the signaling cascade or as cocktail (e.g., with Herceptin) [135–138]. An alternative
therapeutic approach is the application of anti-angiogenic peptides like thrombospondin
(TSP), endostatin, coagulation peptides, growth factors and chemokines, all having a high
success rate in clinical trials due to their low toxicity and high specificity for their recep-
tors [139]. Many studies have demonstrated that pre-treatment of tumors with VEGF
signaling inhibitors improves delivery of both intermediate and large-size nanoparticles
(NPs) by inducing vascular normalization, increasing the expression of MMPs and degra-
dation of collagen fibers and, thus, potentiating drug penetration [140–143]. However,
not all cancer types are benefited by the vascular normalization strategy. For instance,
the less permeable and compressed vasculature of desmoplastic tumors may not exhibit
the expected normalization phenotype [136]. Vessel density, anti-angiogenic drug dose,
and treatment intervals are important factors influencing therapeutic outcome [144]. Ad-
ditionally, reduction in vessel pore size may hamper large NPs from entering the tumor
stroma [145–147]. Therefore, alternative strategies applied alone or in combination with
vascular normalization should be considered to improve treatment outcomes.

5.2. Stroma Normalization Strategy to Target Hypoxia

Apart from promoting metastasis, the dense ECM can act as a physical barrier to the
penetration of immune cells within the TME, creating an immune-excluded phenotype.
Furthermore, the compression of intratumoral vessels owing to tumor stiffening and solid
stress elevation can cause an inefficient and heterogeneous distribution of blood flow in
the tumor resulting in insufficient and non-uniform delivery of drugs and immune cells to
the tumor and hypoxia, which can further support tumor progression and metastasis [148].
Importantly, increased ECM density and vessel compression have been recently observed
not only in the primary tumors but also in breast cancer metastasis in the lungs and has
been related to compromised therapeutic efficacy in lung metastatic lesions [149]. Therefore,
the stroma normalization strategy aims to restore vessel functionality by alleviating intra-
tumoral solid stresses and reducing tumor stiffness [146,147], which allows for increased
tumor perfusion and suppresses invasion and metastasis [150,151]. There are two routes to
stroma normalization by: (a) CAF reprogramming and (b) ECM remodeling [152,153].
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Targeting CAFs as an intratumoral solid stress alleviation approach, has yielded
promising results. Although highly heterogenic, CAFs are generally divided into myofi-
broblastic and non-myofibroblastic populations across different cancer types. Myofibroblas-
tic CAFs are responsible for ECM deposition contributing to tissue stiffness directly through
the production of collagen and proteoglycans, while non-myofibroblasts are implicated in
inflammatory signaling. Importantly, targeting CAFs and associated responses by sonic
hedgehog signaling inhibition has shown to reduce solid stress and IFP in tumor models, en-
hancing the activity of cytotoxic agents like taxol and 5′-fluorouracil (5′-FU) [146,154–156].
However, this strategy has failed in clinical trials and preclinical studies have shown that
excessive depletion of CAFs might fuel tumor progression [157–159]. In addition to their
role in solid stress accumulation, CAFs along with other stromal components promote
the establishment of an immunosuppressive TME via the release of various immunosup-
pressive ligands such as TGF-β, CXCL12, IL-6, CXCL-1, G-SCF, and others which can
impede intratumoral cytotoxic T cell infiltration and activity and enhance the recruitment
of MDSCs, neutrophils and M2-like TAMs [160]. The production of TGF-β by CAFs, al-
lows invasive cancers to evade immune system surveillance by excluding T-cells from the
microenvironment [161]. Concurrent treatment with therapeutic antibodies that inhibit the
programmed death-1 (PD-1)–programmed death-ligand 1 (PD-L1) pathway and TGFβR1
kinase inhibitor, galunisertib, led to increased recruitment of CD8+ T cells to the liver
colonized with CRC cells and reduced metastatic burden. In addition, combined targeting
of TGF-β and PD-1/PD-L1 blockade reduced overall metastatic burden and caused com-
plete tumor eradication in the majority of treated animals [162]. Similarly, in patients with
metastatic urothelial cancer, concurrent targeting of the TGF-β and PD-1/PD-L1 axis led to
increased T cell infiltration and significant anti-tumor response [163].

Regarding ECM remodeling, several studies have focused on modifying the two
most abundant ECM components of desmoplastic tumors, collagen, and hyaluronan [148].
Targeting the ECM using monoclonal antibodies against TGF-β (ID11) as well as known
antihypertensive drugs have been found to potentiate the distribution and efficacy of
therapeutics [164]. A well-characterized example is the angiotensin II type I receptor in-
hibitor, losartan. Preclinical studies evaluating the effect of losartan in pancreatic and breast
tumor models have demonstrated that losartan suppresses TGF-β signaling resulting in a
subsequent downregulation of collagen I and hyaluronan synthesis and other downstream
fibrotic factors, alleviating solid stress and IFP, all of which leading to enhanced vascular
perfusion, improved efficacy of drugs and reduced metastasis [165–169] (Figure 2). The
potential of losartan to modulate the tumor microenvironment and improve cancer therapy
has been already shown in clinical trials in combination with chemoradiation in locally ad-
vanced pancreatic tumors [170–173]. Safety concerns have been raised, though, regarding
the use of antihypertensive agents in cancer patients experiencing normal blood pressure
or hypotension. Hence, additional approved agents have been repurposed for priming
the TME including antihistamine drugs (e.g., tranilast) [149,174,175], corticosteroids (e.g.,
dexamethasone) [176], anti-inflammatory (e.g., pirfenidone) [177], anti-diabetic drugs (e.g.,
metformin) [178], and other agents possessing anti-fibrotic effects (e.g., pentoxifylline) [179],
vitamin D [180], and relaxin [181–184].



Cancers 2021, 13, 2053 11 of 22

Cancers 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

pirfenidone) [177], anti-diabetic drugs (e.g., metformin) [178], and other agents possessing 

anti-fibrotic effects (e.g., pentoxifylline) [179], vitamin D [180], and relaxin [181–184]. 

 

Figure 2. Strategies to improve tumor oxygenation and therapeutic efficacy in primary and metastatic tumors. A desmo-

plastic TME is defined by excess ECM and dysfunctional vasculature. Abundantly found stromal structures, like collagen 

and hyaluronan, promote the development of compressive forces leading to blood vessel collapse, which in turn causes 

hypo-perfusion and hypoxia. In addition, the abnormally large vessel pores of some tumor vessels enhance fluid leakage 

to the interstitial space that further contributes to hypo-perfusion and hypoxia. Hypoxia recruits immunosuppressive 

immune cells, such as M2-macrophages, which in combination with T-cell exclusion and CAFs activation promote metas-

tasis. Stroma and vessel normalization strategies aim to alleviate intratumoral forces and stiffness, decompress vessels, 

improve perfusion and heterogeneous delivery of chemo- and nano-therapeutic agents. Re-establishment of adequate ox-

ygenation within the TME potentiates T cell infiltration, immunostimulation and suppresses metastasis. 

6. Discussion—Future Perspectives 

Currently, the development of novel therapeutic approaches for treating metastatic 

tumors specifically by remodeling the TME, is focused on combination studies, as mono-

therapies have had limited success in the clinic. Special attention is given on the concur-

rent modulation of the immune system. One example is anti-CD40 agonistic antibody 

therapy that involves CD8+ T cell-priming and T cell-mediated anti-tumor responses [185]. 

CD40 agonists bind to the CD40 receptor, a cell-surface member of the TNF receptor su-

perfamily, expressed by APCs, including dendritic cells; once activated, dendritic cells 

activate T cells and prime them against tumors. Even though local or systemic administra-

tion of anti-CD40 treatment was shown to slow post-surgical metastatic growth in mice, 

it has performed moderately in pre-clinical studies [186]. In the TME, tumors and tumor-

associated macrophages (TAMs) secrete immunosuppressive factors, such as the check-

point modulator PD-L1, which diminish the cytotoxic functions of tumor-specific CD8+ T 

cells [187]. A recent study showed that in metastatic ductal pancreatic adenocarcinoma 

(PDAC) patients, the concurrent treatment with agonistic CD40 antibodies and anti-PD-1 

treatment, can trigger effective T cell immunity [188]. In addition, the presence of Toll-like 

Receptors (TLRs) expressed in macrophages and other cells in the TME can provide im-

munosuppressive tumor protection. Treatment with TLR agonists, in combination with 

anti-PD-1 therapy, suppresses the growth of primary and metastatic tumors. Treatment 

with the TLR7 agonist increases the M1/M2 TAMs ratio and increases recruitment of acti-

vated CD8+ T cells in the TME in a mouse model of metastatic head and neck squamous 

cell carcinoma (HNSCC) [189]. 

Figure 2. Strategies to improve tumor oxygenation and therapeutic efficacy in primary and metastatic tumors. A desmo-
plastic TME is defined by excess ECM and dysfunctional vasculature. Abundantly found stromal structures, like collagen
and hyaluronan, promote the development of compressive forces leading to blood vessel collapse, which in turn causes
hypo-perfusion and hypoxia. In addition, the abnormally large vessel pores of some tumor vessels enhance fluid leakage to
the interstitial space that further contributes to hypo-perfusion and hypoxia. Hypoxia recruits immunosuppressive immune
cells, such as M2-macrophages, which in combination with T-cell exclusion and CAFs activation promote metastasis. Stroma
and vessel normalization strategies aim to alleviate intratumoral forces and stiffness, decompress vessels, improve perfusion
and heterogeneous delivery of chemo- and nano-therapeutic agents. Re-establishment of adequate oxygenation within the
TME potentiates T cell infiltration, immunostimulation and suppresses metastasis.

6. Discussion—Future Perspectives

Currently, the development of novel therapeutic approaches for treating metastatic
tumors specifically by remodeling the TME, is focused on combination studies, as monother-
apies have had limited success in the clinic. Special attention is given on the concurrent
modulation of the immune system. One example is anti-CD40 agonistic antibody therapy
that involves CD8+ T cell-priming and T cell-mediated anti-tumor responses [185]. CD40
agonists bind to the CD40 receptor, a cell-surface member of the TNF receptor superfamily,
expressed by APCs, including dendritic cells; once activated, dendritic cells activate T
cells and prime them against tumors. Even though local or systemic administration of
anti-CD40 treatment was shown to slow post-surgical metastatic growth in mice, it has per-
formed moderately in pre-clinical studies [186]. In the TME, tumors and tumor-associated
macrophages (TAMs) secrete immunosuppressive factors, such as the checkpoint modula-
tor PD-L1, which diminish the cytotoxic functions of tumor-specific CD8+ T cells [187]. A
recent study showed that in metastatic ductal pancreatic adenocarcinoma (PDAC) patients,
the concurrent treatment with agonistic CD40 antibodies and anti-PD-1 treatment, can
trigger effective T cell immunity [188]. In addition, the presence of Toll-like Receptors
(TLRs) expressed in macrophages and other cells in the TME can provide immunosup-
pressive tumor protection. Treatment with TLR agonists, in combination with anti-PD-1
therapy, suppresses the growth of primary and metastatic tumors. Treatment with the
TLR7 agonist increases the M1/M2 TAMs ratio and increases recruitment of activated CD8+

T cells in the TME in a mouse model of metastatic head and neck squamous cell carcinoma
(HNSCC) [189].

Novel combination studies also include nanotherapeutics against metastasis. Current
strategies developed to modulate the TME using NPs, include modifying tumor vascu-
lature permeability, polarizing macrophages towards the M1 phenotype, affecting CAFs
and stromal components modulating tumor hypoxia [94]. Gold nanoparticles (AuNPs),
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exhibiting low toxicity, can remodel the TME and may be used either with targeted ther-
apeutics or conventional chemotherapy drugs [190]. AuNPs induce tumor vasculature
normalization, increase blood perfusion, minimize hypoxia in melanoma tumors, and
suppress lung metastasis [191].

In addition to manipulating the tumor vasculature and stroma to improve oxygena-
tion, targeting other factors that contribute to the development of hypoxia in the TME
were also found to effectively block metastasis [192]. In most solid tumors, hypoxia causes
the production of carbonic anhydrase (CAIX). CAIX is involved in pH regulation, causes
acidification of the tumor microenvironment leading to reduced cell adhesion, increased
motility and migration, induction of neovascularization, and activation of proteases. Ex-
pression of CAIX is a poor prognostic marker in patients with metastatic cancer [193].
Since CAIX is implicated in regulating both extracellular and intracellular pH, targeting its
enzymatic activity with specific pharmacological inhibitors is a logical approach against
metastasis [194]. The efficacy of sulfamate CAIX inhibitors has been shown in in vitro
and in vivo models of breast metastasis as well as in clinical Phase I/II trials [195–197].
Inhibition of CAIX using small molecule inhibitor AAZ can slow tumor growth, inhibit
metastasis, and eliminate tumor stem cells in mice [198]. Therefore, combination strate-
gies targeting cancer cell-derived molecules under hypoxic conditions along with TME
remodeling agents which promote tumor oxygenation could be exploited as promising
therapeutic approaches.

The experimental models utilized to study anti-metastatic therapy should also be
revisited to include important TME components that seem to affect patient therapeutic out-
comes. Metastasis-on-a-chip devices that house multiple bioengineered three-dimensional
(3D) organoids can be used for the evaluation of therapeutic approaches against metastatic
potential of cancer cells. A recent study showed that CRC cells specifically homed to liver
and lung constructs, similarly to the clinical setting [199]. Moreover, novel 3D metastasis-
on-a-chip model, which includes organ-specific extracellular microenvironment mimicking
the progression of kidney cancer cells metastasizing to the liver, can be used to compare
the efficacy of various therapeutic strategies [200].

In vivo metastasis models using immunosuppressed mice lack the important com-
ponent of the immune system needed to fully characterize the therapeutic efficacy of a
potential TME-modulating drug. Currently, substantial effort is being made to create hu-
manized patient-derived xenograft (PDX) mouse models, for example using CD34+ HSCs,
which more accurately recapitulate human immune responses [201]. The next generation
of PDX mice will involve engraftment with a human immune system and are expected to
be a valuable tool for assessing therapeutic approaches for metastatic tumors [202–205].

While developing therapeutics to target the metastatic process by modulating the
TME, considerations should also be taken regarding the differences between the microen-
vironment at the primary and secondary tumor sites. In a recent paper discussing the
differences between the TME at the breast and following metastasis to the brain, it was
highlighted that the tissue of origin, such as lung, breast, or melanoma, determines the
type of TME to be developed at the secondary site and how this will regulate metastatic
outgrowth [206]. Evidence suggests that malignant cells facilitate metastasis by bringing
their own soil from the primary site. The resident ECM composition, however, is also par-
tially responsible for shaping the pre-metastatic niche environment [207–209]. Therefore,
modulating one facet of the TME may not yield to the desirable anti-tumor effects, while
the simultaneous targeting of multiple aspects could be a promising strategy. Conclusively,
a thorough characterization of TME constituents must be taken prior to any rational design
of combinatorial approaches to optimize drug delivery and assure optimal therapeutic
responses against metastatic cancer.
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Abbreviations
5′-FU 5′-fluorouracil
APCs antigen presenting cells
ATX autotaxin
BM basement membrane
BM-MSCs bone marrow-derived mesenchymal stem cells
CAFs cancer associated fibroblasts
CA-MSC cancer-associated MSC
CB2 cannabinoid receptor 2
CAIX carbonic anhydrase
CCL2 chemokine (C-C motif) ligand 2
CTCs circulating tumor cells
CTMs circulating tumor microemboli
CSF-1 colony-stimulating factor-1
CRC colorectal cancer
PDAC pancreatic ductal adenocarcinoma
endMT endothelial-to-mesenchymal transition
EMT epithelial-to-mesenchymal transition
ECM extracellular matrix
FAP fibroblast activation protein
GC-MSCs gastric cancer tissue-related mesenchymal stem cells
AuNPs gold nanoparticles
GPCRs G-protein coupled receptors
GM-CSF granulocyte-macrophage colony-stimulating factor
HNSCC head and neck squamous cell carcinoma
HSC hematopoietic stem cells
HCC hepatocellular carcinoma
IMs inflammatory monocytes
IFN-γ interferon-γ
KCNN4 intermediate-conductance Ca2+-activated potassium channels
LECs lymphatic endothelial cells
LPA lysophosphatidic acid
LOX lysyl oxidase
MMPs matrix metalloproteinases
MSCs mesenchymal stem cells
MMT mesenchymal-mesenchymal transition
MAMs metastasis-associated macrophages
NPs nanoparticles
NK natural killer cells
NSCLC non-small cell lung cancer cells
PDX patient-derived xenograft mouse
PD-L1 programmed death-ligand 1
PRL-3 phosphatase of regenerating liver
S-TRAIL secretable tumor necrosis factor apoptosis inducing ligand
sECM synthetic extracellular matrix
TSP thrombospondin
TLRs toll-like Receptors
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TME tumor microenvironment
TMEM tumor microenvironment of metastasis
TNF-α tumor necrosis factor-α
TAMs tumor-associated macrophages
VCAM-1 vascular cell adhesion molecule-1
α-SMA α-smooth muscle actin
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